Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 026201    DOI: 10.1088/1674-1056/20/2/026201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ab initio studies on the mechanic and magnetic properties of PdHx

Cui Xin(崔鑫)a)†, Liang Xi-Xia(梁希侠) a), Wang Jian-Tao(王建涛)b), and Zhao Guo-Zhong(赵国忠)c)
a School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; b Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; c Department of Physics, Capital Normal University, Beijing 100037, China
Abstract  Based on ab initio total energy calculations, the structural, electronic, mechanic, and magnetic properties of PdHx  are investigated. It is found that bulk modulus of PdHx is larger than the metal Pd with the hydrogen storage except Pd4H2. The calculated results for the magnetic moments show that the hydrogen addition weakens the magnetic properties of the PdHx systems. A strong magneto-volume effect is found in PdHx  structures as well as Pd. The transition from paramagnetism to ferromagnetism is discussed. The corresponding densities of states for both structures are also shown to understand the magnetic behaviour.
Keywords:  palladium hydride      electronic structure      magnetic moments  
Received:  04 June 2010      Revised:  29 August 2010      Accepted manuscript online: 
PACS:  62.20.de (Elastic moduli)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  75.50.Cc (Other ferromagnetic metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10764003).

Cite this article: 

Cui Xin(崔鑫), Liang Xi-Xia(梁希侠), Wang Jian-Tao(王建涛), and Zhao Guo-Zhong(赵国忠) Ab initio studies on the mechanic and magnetic properties of PdHx 2011 Chin. Phys. B 20 026201

[1] Zhang A G, Wang Y J, Han X F and Zhang W S 2004 Chin. Phys. 13 2153
[2] Worsham J E, Wilkinson M K and Shull C G 1957 J. Phys. Chem. Solid 3 303
[3] Chan C T and Louie S G 1983 Phys. Rev. B 27 3325
[4] Wu X J, Li Q X and Yang J L 2005 Phys. Rev. B 72 115438
[5] Wang Y, Sun S N and Chou M Y 1996 Phys. Rev. B 53 1
[6] Moruzzi V L and Marcus P M 1989 Phys. Rev. B 39 471
[7] Alexandre S S, Anglada E, Soler J M and Yndurain F 2006 Phys. Rev. B 74 054405
[8] Cui X, Wang J T, Liang X X and Zhao G Z 2009 Solid State Commun. 149 322
[9] Cui X, Wang J T, Liang X X and Zhao G Z 2010 Chin. Phys. Lett. 27 027101
[10] Wollan E O, Cable J W and Koehler W C 1963 J. Phys. Chem. Solids 24 1141
[11] Keune W, Halbauer R, Gonser U, Lauer J and Williamson D L 1977 J. Appl. Phys. 48 2976
[12] Abrahams S C, Guttman L and Kasper J S 1962 Phys. Rev. 127 2052
[13] Jeon Y T and Lee G H 2008 J. Appl. Phys. 103 094313
[14] Bl"ochl P E 1994 Phys. Rev. B 50 17953
[15] Kresse G and Joubert J 1999 Phys. Rev. B 59 1758
[16] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[17] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[18] Wang C L, Yu B H, Huo H L, Chen D and Sun H B 2009 Chin. Phys. B 18 1248
[19] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[20] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[21] Monkhorst H J and Pack J D 1972 Phys. Rev. B 13 5188
[22] Birch F 1947 Phys. Rev. 71 809
[23] Sandera P, Pokluda J, Wang L G and Sob M 1997 Mater. Sci. Eng. A 234--236 370
[24] K"orling M and H"aglund J 1992 Phys. Rev. B 45 13293
[25] Sigalas M, Papaconstantopoulos D A and Bacalis N C 1992 Phys. Rev. B 45 5777
[26] Tom'anek D, Sun Z and Steven G L 1991 Phys. Rev. B 43 4699
[27] Setoyama1 D, Ito M, Matsunaga J, Muta H, Uno M and Yamanaka S 2005 J. Alloys Compd. 394 207
[28] Setoyama D, Matsunaga J, Muta H, Uno M and Yamanaka S 2004 J. Alloys Compd. 381 215
[29] Houari A, Matar S F, Belkhir M A and Nakhl M 2007 Phys. Rev. B 75 064420 endfootnotesize
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
No Suggested Reading articles found!