Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(4): 1594-1597    DOI: 10.1088/1674-1056/18/4/050
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The research on suspended ZnO nanowire field-effect transistor

Li Ming(黎明)a), Zhang Hai-Ying(张海英)a), Guo Chang-Xin(郭常新)b), Xu Jing-Bo(徐静波)a), and Fu Xiao-Jun(付晓君)a)
a Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; b Department of Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  This paper reports that a novel type of suspended ZnO nanowire field-effect transistors (FETs) were successfully fabricated using a photolithography process, and their electrical properties were characterized by $I$--$V$  measurements. Single-crystalline ZnO nanowires were synthesized by a hydrothermal method, they were used as a suspended ZnO nanowire channel of back-gate field-effect transistors (FET). The fabricated suspended nanowire FETs  showed a p-channel depletion mode, exhibited high on--off current ratio of $\sim$10$^{5}$. When $V_{\rm DS}=2.5$ V, the peak transconductances of the suspended FETs were 0.396 $\mu $S, the oxide capacitance was found to be  1.547 fF, the pinch-off voltage $V_{\rm TH}$ was about 0.6 V, the electron mobility was on average 50.17 cm$^{2}$/Vs. The resistivity of the ZnO nanowire channel was estimated to be $0.96\times 10^{2}~\Omega $ cm at  $V_{\rm GS} = 0$ V. These characteristics revealed that the suspended nanowire FET fabricated by the photolithography process had excellent performance. Better contacts between the ZnO nanowire and metal electrodes could be improved through annealing and metal deposition using a focused ion beam.
Keywords:  ZnO nanowire      back-gate      suspended      field-effect transistor  
Received:  26 September 2008      Revised:  13 October 2008      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  81.16.Nd (Micro- and nanolithography)  
  73.63.Nm (Quantum wires)  
  81.07.Vb (Quantum wires)  

Cite this article: 

Li Ming(黎明), Zhang Hai-Ying(张海英), Guo Chang-Xin(郭常新), Xu Jing-Bo(徐静波), and Fu Xiao-Jun(付晓君) The research on suspended ZnO nanowire field-effect transistor 2009 Chin. Phys. B 18 1594

[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[3] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[4] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[5] Impact of incident direction on neutron-induced single-bit and multiple-cell upsets in 14 nm FinFET and 65 nm planar SRAMs
Shao-Hua Yang(杨少华), Zhan-Gang Zhang(张战刚), Zhi-Feng Lei(雷志锋), Yun Huang(黄云), Kai Xi(习凯), Song-Lin Wang(王松林), Tian-Jiao Liang(梁天骄), Teng Tong(童腾), Xiao-Hui Li(李晓辉), Chao Peng(彭超), Fu-Gen Wu(吴福根), and Bin Li(李斌). Chin. Phys. B, 2022, 31(12): 126103.
[6] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[7] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[8] Extended-source broken gate tunnel FET for improving direct current and analog/radio-frequency performance
Hui-Fang Xu(许会芳), Wen Sun(孙雯), and Na Wang(王娜). Chin. Phys. B, 2021, 30(7): 078503.
[9] Device physics and design of FD-SOI JLFET with step-gate-oxide structure to suppress GIDL effect
Bin Wang(王斌), Xin-Long Shi(史鑫龙), Yun-Feng Zhang(张云峰), Yi Chen(陈伊), Hui-Yong Hu(胡辉勇), and Li-Ming Wang(王利明). Chin. Phys. B, 2021, 30(4): 047401.
[10] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[11] Integrated silicon-based suspended racetrack micro-resonator for biological solution sensing with high-order mode
Tao Ma(马涛), Yong-Sheng Tian(田永生), Shao-Hui Liu(刘少晖), Jia-He Ma(马家赫), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(11): 114208.
[12] Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams
Hong-Jun Zhang(张宏俊), Ji Wen(文继), Zhao-Hong Mo(莫钊洪), Hong-Rui Liu(刘鸿瑞), Xiao-Dong Wang(汪小东), Zhong-Hua Xiong(熊忠华), Jin-Wen Zhang(张锦文), and Mao-Bing Shuai(帅茂兵). Chin. Phys. B, 2021, 30(11): 117401.
[13] Characteristic enhancement in tunnel field-effect transistors via introduction of vertical graded source
Zhijun Lyu(吕智军), Hongliang Lu(吕红亮), Yuming Zhang(张玉明), Yimen Zhang(张义门), Bin Lu(芦宾), Yi Zhu(朱翊), Fankang Meng(孟凡康), Jiale Sun(孙佳乐). Chin. Phys. B, 2020, 29(5): 058501.
[14] Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation
Zhi-Gang Wang(汪志刚), Tao Liao(廖涛), Ya-Nan Wang(王亚南). Chin. Phys. B, 2019, 28(5): 058503.
[15] Stacked lateral double-diffused metal-oxide-semiconductor field effect transistor with enhanced depletion effect by surface substrate
Qi Li(李琦), Zhao-Yang Zhang(张昭阳), Hai-Ou Li(李海鸥), Tang-You Sun(孙堂友), Yong-He Chen(陈永和), Yuan Zuo(左园). Chin. Phys. B, 2019, 28(3): 037201.
No Suggested Reading articles found!