Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 028101    DOI: 10.1088/1674-1056/ad0ec5
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Purification of copper foils driven by single crystallization

Jin-Zong Kou(寇金宗)1,2,3,4, Meng-Ze Zhao(赵孟泽)5, Xing-Guang Li(李兴光)5, Meng-Lin He(何梦林)1, Fang-You Yang(杨方友)1, Ke-Hai Liu(刘科海)1, Qing-Qiu Cheng(成庆秋)3,4, Yun-Long Ren(任云龙)3,4, Can Liu(刘灿)6,†, Ying Fu(付莹)1,‡, Mu-Hong Wu(吴慕鸿)1,7,§, Kai-Hui Liu(刘开辉)1,5,7, and En-Ge Wang(王恩哥)1,7,8
1 Songshan Lake Materials Laboratory, Dongguan 523808, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China;
4 Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China;
5 State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China;
6 Key Laboratory of Quantum State Construction and Manipulation(Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China;
7 International Center for Quantum Materials, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China;
8 School of Physics, Liaoning University, Shenyang 110036, China
Abstract  High-purity copper (Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current purification process is mainly based on the zone/electrolytic refining or anion exchange, however, which excessively relies on specific integrated equipment with ultra-high vacuum or chemical solution environment, and is also bothered by external contaminants and energy consumption. Here we report a simple approach to purify the Cu foils from 99.9% (3N) to 99.99% (4N) by a temperature-gradient thermal annealing technique, accompanied by the kinetic evolution of single crystallization of Cu. The success of purification mainly relies on (i) the segregation of elements with low effective distribution coefficient driven by grain-boundary movements and (ii) the high-temperature evaporation of elements with high saturated vapor pressure. The purified Cu foils display higher flexibility (elongation of 70%) and electrical conductivity (104% IACS) than that of the original commercial rolled Cu foils (elongation of 10%, electrical conductivity of ~ 100% IACS). Our results provide an effective strategy to optimize the as-produced metal medium, and therefore will facilitate the potential applications of Cu foils in precision electronic products and high-frequency printed circuit boards.
Keywords:  purification      copper foil      thermal annealing technique      single crystallization  
Received:  08 September 2023      Revised:  21 November 2023      Accepted manuscript online:  22 November 2023
PACS:  81.05.Bx (Metals, semimetals, and alloys)  
  81.20.Ym (Purification)  
  61.72.S- (Impurities in crystals)  
Fund: Project supported by the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant Nos. 2019A1515110302 and 2022A1515140003), the Key Research and Development Program of Guangdong Province, China (Grant Nos. 2020B010189001, 2021B0301030002, 2019B010931001, and 2018B030327001), the National Natural Science Foundation of China (Grant Nos. 52172035, 52025023, 52322205, 51991342, 52021006, 51991344, 52100115, 11888101, 92163206, 12104018, and 12274456), the National Key Research and Development Program of China (Grant Nos. 2021YFB3200303, 2022YFA1405600, 2018YFA0703700, 2021YFA1400201, and 2021YFA1400502), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33000000), the Pearl River Talent Recruitment Program of Guangdong Province, China (Grant No. 2019ZT08C321), China Postdoctoral Science Foundation (Grant Nos. 2020T130022 and 2020M680178), and the Science and Technology Plan Project of Liaoning Province, China (Grant No. 2021JH2/10100012).
Corresponding Authors:  Can Liu, Ying Fu, Mu-Hong Wu     E-mail:  canliu@ruc.edu.cn;fuying@sslab.org.cn;mhwu@pku.edu.cn

Cite this article: 

Jin-Zong Kou(寇金宗), Meng-Ze Zhao(赵孟泽), Xing-Guang Li(李兴光), Meng-Lin He(何梦林), Fang-You Yang(杨方友), Ke-Hai Liu(刘科海), Qing-Qiu Cheng(成庆秋), Yun-Long Ren(任云龙), Can Liu(刘灿), Ying Fu(付莹), Mu-Hong Wu(吴慕鸿), Kai-Hui Liu(刘开辉), and En-Ge Wang(王恩哥) Purification of copper foils driven by single crystallization 2024 Chin. Phys. B 33 028101

[1] Pfleiderer C, Uhlarz M, Hayden S M, Vollmer R, Löhneysen H V, Bernhoeft N R and Lonzarich G G 2001 Nature 412 58
[2] Berman D, Deshmukh S A, Narayanan B, Sankaranarayanan S K R S, Yan Z, Balandin A A, Zinovev A, Rosenmann D and Sumant A V 2016 Nat. Commun. 7 12099
[3] Lin S, Li W, Chen Z, Shen J, Ge B and Pei Y 2016 Nat. Commun. 7 10287
[4] Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raabe D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T G and Lu Z 2018 Nature 563 546
[5] Kas R, Hummadi K K, Kortlever R, De Wit P, Milbrat A, Luiten-Olieman M W J, Benes N E, Koper M T M and Mul G 2016 Nat. Commun. 7 10748
[6] Place A P M, Rodgers L V H, Mundada P, Smitham B M, Fitzpatrick M, Leng Z, Premkumar A, Bryon J, Vrajitoarea A, Sussman S, Cheng G, Madhavan T, Babla H K, Le X H, Gang Y, Jäck B, Gyenis A, Yao N, Cava R J, De Leon N P and Houck A A 2021 Nat. Commun. 12 1779
[7] Pinheiro J M, Rehder G P, Gomes L G, Alvarenga R C A, Pelegrini M V, Podevin F, Ferrari P and Serrano A L C 2018 IEEE T. Microw. Theory 66 784
[8] Lu L, Shen Y F, Chen X H, Qian L H and Lu K 2004 Science 304 422
[9] Schulz L, Nuccio L, Willis M, Desai P, Shakya P, Kreouzis T, Malik V K, Bernhard C, Pratt F L, Morley N A, Suter A, Nieuwenhuys G J, Prokscha T, Morenzoni E, Gillin W P and Drew A J 2011 Nat. Mater. 10 39
[10] Richard G, Salama A R, Medles K, Lubat C, Touhami S and Dascalescu L 2017 IEEE T. Ind. Appl. 53 3960
[11] Liu Y, Zhu J, Cai L, Yao Z, Duan C, Zhao Z, Zhao C and Mai W 2020 Sol. RRL 4 1900339
[12] Yu S, Li J, Zhao L, Wu M, Dong H and Li L 2021 Sol. Energy Mater. Sol. Cells 221 110885
[13] Vijayan K, Vijayachamundeeswari S, Sivaperuman K, Ahsan N, Logu T and Okada Y 2022 Sol. Energy 234 81
[14] Wang J, Cao J and Feng J 2010 Mater. Design 31 2253
[15] Wofford J M, Nie S, Mccarty K F, Bartelt N C and Dubon O D 2010 Nano Lett. 10 4890
[16] Paronyan T M, Pigos E M, Chen G and Harutyunyan A R 2011 ACS Nano 5 9619
[17] Murdock A T, Van Engers C D, Britton J, Babenko V, Meysami S S, Bishop H, Crossley A, Koos A A and Grobert N 2017 Carbon 122 207
[18] Fujiwara S and Abiko K 1995 J. Phys. IV 05 295
[19] Cho Y C, Lee S, Ajmal M, Kim W K, Cho C R, Jeong S Y, Park J H, Park S E, Park S, Pak H K and Kim H C 2010 Cryst. Growth Des. 10 2780
[20] Kim P, Mihara Y, Ozawa E, Nozawa Y and Hayashi C 2000 Mater. T. JIM 41 37
[21] Kenji K, Yoshie T and Kiyotaka N (U.S. Patent) 10 407 785 [2016-04-07]
[22] Zhang H, Wang S, Tian Y, Wen J, Hang C, Zheng Z, Huang Y, Ding S and Wang C 2020 Nano Mater. Sci. 2 164
[23] Berger L, Jurczyk J, Madajska K, Edwards T E J, Szymańska I, Hoffmann P and Utke I 2020 ACS Appl. Electron. Mater. 2 1989
[24] Oishi T, Yaguchi M and Takai Y 2021 Resour. Conser. Recy. 167 105382
[25] Stinn C and Allanore A 2022 Nature 602 78
[26] Hoffmann J E 2004 JOM 56 30
[27] Xiao F X, Zheng Y J, Wang Y, Xu W, Li C H and Jian H S 2007 T. Nonferr. Metal. Soc. 17 1069
[28] Kekesi T, Mimura K, Ishikawa Y and Isshiki M 1997 Metal. Mater. Trans. B 28 987
[29] Takano S, Tanimizu M, Hirata T, Shin K C, Fukami Y, Suzuki K and Sohrin Y 2017 Anal. Chim. Acta 967 1
[30] Ishikawa Y, Mimura K and Isshiki M 1999 Mater. T. JIM 40 87
[31] Zhu Y, Mimura K, Ishikawa Y and Isshiki M 2002 Mater. Trans. 43 2802
[32] Lalev G M, Lim J W, Munirathnam N R, Choi G S, Uchikoshi M, Mimura K and Isshiki M 2009 Mater. Trans. 50 618
[33] Xu X Z, Zhang Z H, Dong J C, Yi D, Niu J J, Wu M H, Lin L, Yin R K, Li M Q, Zhou J Y, Wang S X, Sun J L, Duan X J, Gao P, Jiang Y, Wu X S, Peng H L, Ruoff R S, Liu Z F, Yu D P, Wang E G, Ding F and Liu K H 2017 Sci. Bull. 62 1074
[34] Zhang C, Jiang W, Yang B, Liu D, Xu B and Yang H 2015 Fluid Phase Equilib. 405 68
[35] Chen Y and Yang H 2019 IOP C. Ser. Earth Env. 252 022035
[36] Wu M, Zhang Z, Xu X, Zhang Z, Duan Y, Dong J, Qiao R, You S, Wang L, Qi J, Zou D, Shang N, Yang Y, Li H, Zhu L, Sun J, Yu H, Gao P, Bai X, Jiang Y, Wang Z J, Ding F, Yu D, Wang E and Liu K 2020 Nature 581 406
[37] Christien F, Downing C, Moore K L and Grovenor C R M 2012 Surf. Interface Anal. 44 377
[38] Christien F, Downing C, Moore K L and Grovenor C R M 2013 Surf. Interface Anal. 45 305
[39] Faulkner R G 2013 Int. Mater. Rev. 41 198
[40] Lalev G M, Lim J W, Munirathnam N R, Choi G S, Uchikoshi M, Mimura K and Isshiki M 2009 Mater. Charact. 60 60
[41] Drápala J, Luňáček J, Kuchař L and Kuchař L 1993 Mat. Sci. Eng. A-struct 173 73
[42] Alcock C B, Itkin V P and Horrigan M K 2013 Can. Metall. Quart. 23 309
[43] Rienstra-Kiracofe J C, Tschumper G S, Schaefer H F, Nandi S and Ellison G B 2002 Chem. Rev. 102 231
[44] Razumovskiy V I, Divinski S V and Romaner L 2018 Acta Mater. 147 122
[45] Bernardini J, Girardeaux C and Rolland A 2006 Defect Diffus. Forum 249 161
[46] Li X, Zhang Z, Zhang Z, Kou J, Wu M, Zhao M, Qiao R, Ding Z, Zhang Z, Liu F, Yang X, Zou D, Wang X, Gao P, Fu Y, Wang E and Liu K 2023 Sci. Bull. 68 1611
[47] Nordlund K and Averback R 2005 Handbook of Materials Modeling: Methods (Dordrecht: Springer Netherlands) pp. 1855-1876
[1] Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system
Fang-Fang Du(杜芳芳), Gang Fan(樊钢), Yi-Ming Wu(吴一鸣), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2023, 32(6): 060304.
[2] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[3] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[4] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[5] Microparticle collection for water purification based on laser-induced convection
Zhi-Hai Liu(刘志海), Jiao-Jie Lei(雷皎洁), Yu Zhang(张羽), Ya-Xun Zhang(张亚勋), Xing-Hua Yang(杨兴华), Jian-Zhong Zhang(张建中), Yun Yang(杨军), Li-Bo Yuan(苑立波). Chin. Phys. B, 2018, 27(5): 054209.
[6] Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(6): 060307.
[7] Fast multi-copy entanglement purification with linear optics
Cai Chun (蔡春), Zhou Lan (周澜), Sheng Yu-Bo (盛宇波). Chin. Phys. B, 2015, 24(12): 120306.
[8] Preparation of graphene on Cu foils by ion implantation with negative carbon clusters
Li Hui (李慧), Shang Yan-Xia (尚艳霞), Zhang Zao-Di (张早娣), Wang Ze-Song (王泽松), Zhang Rui (张瑞), Fu De-Jun (付德君). Chin. Phys. B, 2015, 24(1): 018502.
[9] Efficient entanglement purification in quantum repeaters
Sheng Yu-Bo(盛宇波), Zhou Lan(周澜), Cheng Wei-Wen(程维文), Gong Long-Yan(巩龙龑), Zhao Sheng-Mei(赵生妹), and Zheng Bao-Yu(郑宝玉) . Chin. Phys. B, 2012, 21(3): 030307.
[10] Development of silicon purification by strong radiation catalysis method
Chen Ying-Tian(陈应天), Ho Tso-Hsiu(何祚庥), Lim Chern-Sing(林晨星), and Lim Boon Han(林文汉). Chin. Phys. B, 2010, 19(11): 118105.
[11] Purification of entangled states for two atoms via cavity decay
Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2008, 17(8): 2969-2972.
No Suggested Reading articles found!