Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067701    DOI: 10.1088/1674-1056/acaa2b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multiferroic monolayers VOX (X = Cl, Br, I): Tunable ferromagnetism via charge doping and ferroelastic switching

Hong-Chao Yang(杨洪超), Peng-Cheng Liu(刘鹏程), Liu-Yu Mu(穆鎏羽), Ying-De Li(李英德), Kai Han(韩锴), and Xiao-Le Qiu(邱潇乐)
School of Physics and Electronic Information, Weifang University, Weifang 261061, China
Abstract  The fascinating properties arising from the interaction between different ferroic states of two-dimensional (2D) materials have inspired tremendous research interest in the past few years. Under the first-principles calculations, we predict the coexistence of antiferromagnetic and ferroelastic states in VO$X$ ($X={\rm Cl}$, Br, I) monolayers. The results illustrate that the VO$X$ monolayers exhibit indirect bandgap characteristics, $i.e.$, their gaps decrease with the halide elements changing from Cl to I. The ground states of all these VO$X$ monolayers are antiferromagnetic (AFM) with the magnetic moments contributed by the V 3d electrons. Furthermore, the magnetic ground state changing from AFM to ferromagnetism (FM) can be realized by doping carriers. In addition, the moderate ferroelastic transition barrier and reversible switching signal ensure their high performances of nonvolatile memory devices. Our findings not only offer an ideal platform for investigating the multiferroic properties, but also provide candidate materials for potential applications in spintronics.
Keywords:  antiferromagnetic      ferroelastic      carrier doping      multiferroic states  
Received:  12 October 2022      Revised:  25 November 2022      Accepted manuscript online:  09 December 2022
PACS:  77.55.Nv (Multiferroic/magnetoelectric films)  
  66.30.J- (Diffusion of impurities ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104344 and 61674003), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2021QA096), the Science and Technology Development Program of Weifang High-tech Industrial Development Zone, China (Grant No. 2020KJHM03), and the Doctoral Research Start-up Foundation of Weifang University, China (Grant No. 2021BS05).
Corresponding Authors:  Hong-Chao Yang, Xiao-Le Qiu     E-mail:  hc_yang90@163.com;qiu.xiaole@163.com

Cite this article: 

Hong-Chao Yang(杨洪超), Peng-Cheng Liu(刘鹏程), Liu-Yu Mu(穆鎏羽), Ying-De Li(李英德), Kai Han(韩锴), and Xiao-Le Qiu(邱潇乐) Multiferroic monolayers VOX (X = Cl, Br, I): Tunable ferromagnetism via charge doping and ferroelastic switching 2023 Chin. Phys. B 32 067701

[1] Li L and Wu M H2017 ACS Nano 11 6382
[2] Tang X and Kou L Z2019 J. Phys. Chem. Lett. 10 6634
[3] Zhong T T, Li X Y, Wu M H and Liu J M2020 Nat. Sci. Rev. 7 373
[4] Jia F H, Xu S W, Zhao G D, Liu C and Ren W2020 Phys. Rev. B 101 144106
[5] You H P, Ding N, Chen J and Dong S2020 Phys. Chem. Chem. Phys. 22 24109
[6] Hippel A V, Breckenridge R G, Chesley F G and Tisza L1946 Ind. Eng. Chem. 38 1097
[7] Feng X K, Ma X K, Sun L, Liu J and Zhao M W2020 J. Mater. Chem. C 8 13982
[8] Spaldin N A and Fiebig M2005 Science 309 391
[9] Wang P S, Ren W, Bellaiche L and Xiang H J2015 Phys. Rev. Lett. 114 147204
[10] Taz H, Prasad B, Huang Y L, Chen Z H, Hsu S L, Xu R J, Thakare V, Sakthivel T S, Liu C Z, Hettick M, Mukherjee R, Seal S. Martin L W, Javey A, Duscher G, Ramesh R and Kalyanaraman R2020 Sci. Rep. 10 3583
[11] Cao L M, Deng X H, Zhou G H, Liang S J, Nguyen C V, Ang L K and Ang Y S2022 Phys. Rev. B 105 165302
[12] Wang H and Qian X F2017 2D Mater. 4 015042
[13] Wu M and Zeng X C2016 Nano Lett. 16 3236
[14] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D2017 Nature 546 270
[15] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X2017 Nature 546 265
[16] Cheng W R, He J F, Yao T, Sun Z H, Jiang Y, Liu Q H, Jiang S, Hu F C, Xie Z, He B, Yan W S and Wei S Q2014 J. Am. Chem. Soc. 136 10393
[17] Miao N H, Xu B, Zhu L G, Zhou J and Sun Z M2018 J. Am. Chem. Soc. 140 2417
[18] Qing X M, Li H, Zhong C G, Zhou P X, Dong Z C and Liu J M2020 Phys. Chem. Chem. Phys. 22 17255
[19] Guo Y L, Zhang Y H, Yuan S J, Wang B and Wang J L2018 Nanoscale 10 18036
[20] Sivadas N, Okamoto S, Xu X D, Fennie C J and Xiao D2018 Nano Lett. 18 7658
[21] Jiang Z, Wang P, Xing J P, Jiang X and Zhao J J2018 ACS Appl. Mater. Interfaces 10 39032
[22] Yang H C, Song M Q, Li Y D, Guo Y W and Han K2022 Physica E 143 115341
[23] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y2018 Rev. Mod. Phys. 90 015005
[24] Jungwirth T, Marti X, Wadley P and Wunderlich J2016 Nat. Nanotechnol. 11 231
[25] He J J, Ding G Q, Zhong C Y, Li S, Li D F and Zhang G2019 Nanoscale 11 356
[26] Lv H Y, Lu W J, Luo X, Zhu X B and Sun Y P2019 Phys. Rev. B 99 134416
[27] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero and Xu X D2018 Nat. Nanotechnol. 13 544
[28] Shen S Y, Wu Q, Dai Y, Huang B B and Ma Y D2021 Phys. Rev. B 104 064446
[29] Weston L, Cui X Y, Ringer S P and Stampfl C2016 Phys. Rev. B 93 165210
[30] Tan H X, Li M L, Liu H T, Liu Z R, Li Y C and Duan W H2019 Phys. Rev. B 99 195434
[31] Hill N A2000 J. Phys. Chem. B 104 6694
[32] Spaldin N A, Cheong S W and Ramesh R2010 Phys. Today 6 38
[33] Kou L Z, Ma Y D, Tang C, Sun Z Q, Du A J and Chen C F2016 Nano Lett. 16 7910
[34] Tang X and Kou L Z2019 J. Phys. Chem. Lett. 10 6634
[35] Burch K S, Mandrus D and Park J G2018 Nature 563 47
[36] Jiang S W, Li L Z, Wang Z F, Mak K F and Shan J2018 Nat. Nanotechnol. 13 549
[37] Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H and Xu Y2019 Sci. Adv. 5 eaaw5685
[38] Kresse G and Furthmüller J1996 Phys. Rev. B 54 11169
[39] Kresse G and Furthmüller J1996 Comput. Mater. Sci. 6 15
[40] Perdew J P and Wang Y1992 Phys. Rev. B 45 13244
[41] Perdew J P, Burke K and Ernzerhof M1996 Phys. Rev. Lett. 77 3865
[42] Blöchl P1994 Phys. Rev. B 50 17953
[43] Glawion S, Scholz M R, Zhang Y Z, Valentí R, Saha-Dasgupta T, Klemm M, Hemberger J, Horn S, Sing M and Claessen R2009 Phys. Rev. B 80 155119
[44] Komarek A C, Taetz T, Fernández-Díaz M T, Trots D M, Möller A and Braden M2009 Phys. Rev. B 79 104425
[45] Henkelman G, Uberuaga B P and Jónsson H2000 J. Chem. Phys. 113 9901
[46] Gonze X and Lee C1997 Phys. Rev. B 55 10355
[47] Ekholm M, Schönleber A and Smaalen S V2019 J. Phys.: Condens. Matter 31 325502
[48] Ai H Q, Song X H, Qi S Y, Li W F and Zhao M W2019 Nanoscale 11 1103
[49] Song R, Wang B L, Feng K, Wang L and Liang D D2022 Acta Phys. Sin. 71 037101 (in Chinese)
[50] Zhang Y, Lin L F, Moreo A, Alvarez G and Dagotto E2021 Phys. Rev. B 103 L121114
[51] Abdollahi M and Tagani M B2020 J. Mater. Chem. C 8 13286
[52] Xiao W Z, Xu L, Xiao G, Wang L L and Dai X Y2020 Phys. Chem. Chem. Phys. 22 14503
[53] Anderson P W1950 Phys. Rev. 79 350
[54] Goodenough J B1955 Phys. Rev. 100 564
[55] Kanamori J1960 J Appl. Phys. 31 S14
[56] Li W B and Li J2016 Nat. Commun. 7 10843
[57] Xu X L, Ma Y D, Huang B B and Dai Y2019 Phys. Chem. Chem. Phys. 21 7440
[58] Xu B, Xiang H, Yin J, Xia Y D and Liu Z G2017 Nanoscale 10 215
[59] Wang H D, Li X X, Sun J Y, Liu Z and Yang J L2017 2D Mater. 4 045020
[60] Xu B, Li S C, Jiang K, Yin J, Liu Z G, Cheng Y C and Zhong W Y2020 Appl. Phys. Lett. 116 052403
[61] Hu M L, Xu S W, Liu C, Zhao G D, Yu J H and Ren W2020 Nanoscale 12 24237
[62] Zhang S H and Liu B G2018 Nanoscale 10 5990
[63] Wang C S, Ke X X, Wang J J, Liang R R, Luo Z L, Tian Y, Yi D, Zhang Q T, Wang J, Han X F, Tendeloo G V, Chen L Q, Nan C W, Ramesh R and Zhang J X2016 Nat. Commun. 7 10636
[1] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[2] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[3] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[4] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[5] Magnetic phase diagram of single-layer CrBr3
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(12): 127501.
[6] Antiferromagnetic spin dynamics in exchanged-coupled Fe/GdFeO3 heterostructure
Na Li(李娜), Jin Tang(汤进), Lei Su(苏磊), Ya-Jiao Ke(柯亚娇), Wei Zhang(张伟), Zong-Kai Xie(谢宗凯), Rui Sun(孙瑞), Xiang-Qun Zhang(张向群), Wei He(何为), and Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2021, 30(11): 117502.
[7] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[8] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[9] Quaternary antiferromagnetic Ba2BiFeS5 with isolated FeS4 tetrahedra
Shaohua Wang(王少华), Xiao Zhang(张晓), Hechang Lei(雷和畅). Chin. Phys. B, 2019, 28(8): 087401.
[10] Spin transport in antiferromagnetic insulators
Zhiyong Qiu(邱志勇), Dazhi Hou(侯达之). Chin. Phys. B, 2019, 28(8): 088504.
[11] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
[12] Temperature-dependent interlayer exchange coupling strength in synthetic antiferromagnetic[Pt/Co]2/Ru/[Co/Pt]4 multilayers
Yong Li(李勇), Xiangjun Jin(金香君), Pengfei Pan(潘鹏飞), Fu Nan Tan, Wen Siang Lew, Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127502.
[13] Temperature-dependent Raman spectroscopic study of ferroelastic K2Sr(MoO4)
Ji Zhang(张季), De-Ming Zhang(张德明), Ran-Ran Zhang(张冉冉). Chin. Phys. B, 2018, 27(11): 117801.
[14] Spin switching in antiferromagnets using Néel-order spin-orbit torques
P Wadley, K W Edmonds. Chin. Phys. B, 2018, 27(10): 107201.
[15] Quantum critical behavior in an antiferromagnetic heavy-fermion Kondo lattice system (Ce1-xLax)2Ir3Ge5
Rajwali Khan, Qianhui Mao(毛乾辉), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Jianhua Du(杜建华), Binjie Xu(许彬杰), Yuxing Zhou(周宇星), Yannan Zhang(张燕楠), Bing Chen(陈斌), Minghu Fang(方明虎). Chin. Phys. B, 2017, 26(1): 017401.
No Suggested Reading articles found!