Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084202    DOI: 10.1088/1674-1056/ab942c

Synthesis of new silicene structure and its energy band properties

Wei-Qi Huang(黄伟其)1,2, Shi-Rong Liu(刘世荣)3, Hong-Yan Peng(彭鸿雁)1, Xin Li(李鑫)2, Zhong-Mei Huang(黄忠梅)2
1 Department of Physics, Hainan Normal University, Haikou 571158, China;
2 Institute of Nanophotonic Physics, Guizhou University, Guiyang 550025, China;
3 State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003, China
Abstract  Silicene, silicon analogue to graphene which possesses a two-dimensional (2D) hexagonal lattice, has attracted increasing attention in the last few years due to predicted unique properties. However, silicon naturally possesses a three-dimensional (3D) diamond structure, so there seems to be not any natural solid phase of silicon similar to graphite. Here we report the synthesis of new silicene structure with a unique rectangular lattice by using a coherent electron beam to irradiate amorphous silicon nanofilm produced by pulsed laser deposition (PLD). Under the irradiation of coherent electron beam with proper kinetic energy, the surface layer of silicon nanofilm can be crystallized into silicene. The dynamic stability and the energy band properties of this new silicene structure are investigated by using first-principle calculations and density function theory (DFT) with the help of the observed crystalline structure and lattice constant. The new silicene structure has a real direct bandgap of 0.78 eV. Interestingly, the simulating calculation shows that the convex bond angle is 118° in the new silicene structure with rectangular lattices. The DFT simulations reveal that this new silicene structure has a Dirac-cone-like energy band. The experimental realization of silicene and the theoretically predicted properties shed light on the silicon material with potential applications in new devices.
Keywords:  silicene      nanofilm      irradiation of coherent electron beam      pulsed laser deposition      Dirac cone  
Received:  19 March 2020      Revised:  11 April 2020      Accepted manuscript online: 
PACS:  42.55.-f (Lasers)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
  78.45.+h (Stimulated emission)  
Fund: Project supported by the Science and Technology Program of Guizhou Province, China (Grant Nos.[2018]5781 and[2020]1Y022), the Open Project of State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China (Grant No. KF201903), and the National Natural Science Foundation of China (Grant No. 11847084).
Corresponding Authors:  Wei-Qi Huang, Wei-Qi Huang     E-mail:;

Cite this article: 

Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅) Synthesis of new silicene structure and its energy band properties 2020 Chin. Phys. B 29 084202

[1] Novoselov K S, et al. 2004 Science 306 666
[2] Novoselov K S, et al. 2005 Nature 438 197
[3] Kim K S, et al. 2009 Nature 457 706
[4] Seol J H, et al. 2010 Science 328 213
[5] Feng B, et al. 2012 Nano Lett. 12 3507
[6] Lalmi B, et al. 2010 Appl. Phys. Lett. 97 223109
[7] Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398
[8] Zhang Min, Wang X X, Cao W Q, Yuan J and Cao M S 2019 Adv. Opt. Mater 7 1900689
[9] Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X Y and Yuan 2019 Jannalen Der. Physik 531 1800390
[10] Takeda K and Shiraishi K 1994 Phys. Rev. B 50 14916
[11] Guzmán-Verri G G and Lew Yan Voon L C 2007 Phys. Rev. B 76 075131
[12] Tsai W F et al. 2012 Nat. Commun. 4 1500
[13] Tritsaris G A, Kaxiras E, Meng S and Wang E 2013 Nano Lett. 13 2258
[14] Tao L, et al. 2015 Nat. Nanotech. 10 227
[15] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[16] Vogt P et al. 2012 Phys. Rev. Lett. 108 155501
[17] Linghu J, Shen L, Yang M, Xu S Y and Feng Y P 2017 J. Phys. Chem. C 121 15574
[18] Yamada-Takamura Y and Friedlein R 2014 Sci. Technol. Adv. Mater. 15 064404
[19] Lin C L, et al. 2012 Appl. Phys. Express 5 045802
[20] Jamgotchian H et al. 2012 J. Phys.:Condens. Matter 24 172001
[21] Scalise E, et al. 2014 Appl. Surf. Sci. 291 113
[22] Aufray B, et al. 2010 Appl. Phys. Lett. 96 183102
[23] De Padova P, et al. 2010 Appl. Phys. Lett. 96 261905
[24] Chiappe D, Grazianetti C, Tallarida G, Fanciulli M and Molle A 2012 Adv. Mater. 24 5088
[25] Morishita T, Nishio K and Mikami M 2008 Phys. Rev. B 77 081401
[26] Nishio K, Morishita T, Shinoda W and Mikami M 2006 J. Chem. Phys. 125 074712
[27] Bai J, Tanaka H and Zeng X C 2010 Nano Res. 3 694
[28] Zhang Y P Wang Z G Nie Z Q Li C B, Chen H X, Lu K Q and Xiao M 2011 Phys. Rev. Lett. 106 093904
[29] Zhang Y Q, Wu Z K, Belić M R, Zheng H B, Wang Z G, Xiao M and Zhang Y P 2015 Laser Photon. Rev. 9 331
[30] Zhang Z Y Zhang Y Q Sheng J T Yang L, Miri Mohammad-Ali, Christodoulides D N, He B, Zhang Y P and Xiao M 2016 Phys. Rev. Lett. 117 123601
[31] Zhou N, Zhou P, Li J, He C Y and Zhong J X 2019 Phys. Rev. B 100 115425
[32] Shi X, et al. 2014 J. Appl. Phys. 116 033104
[33] Huang W Q, et al. 2012 Appl. Phys. Lett. 101 171601
[1] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[2] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[3] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[4] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[5] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[6] Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms
Shu-Sen Yang(杨树森), Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2019, 28(8): 086501.
[7] Growth of high quality Sr2IrO4 epitaxial thin films onconductive substrates
Hui Xu(徐珲), Zhangzhang Cui(崔璋璋), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林). Chin. Phys. B, 2019, 28(7): 078102.
[8] A simple rule for finding Dirac cones in bilayered perovskites
Xuejiao Chen(陈雪娇), Lei Liu(刘雷), Dezhen Shen(申德振). Chin. Phys. B, 2019, 28(7): 077106.
[9] Hydrogenated antimonene as quantum spin Hall insulator: A first-principles study
Xin He(贺欣), Ji-Biao Li(李佶彪). Chin. Phys. B, 2019, 28(3): 037301.
[10] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[11] Generation of valley pump currents in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克). Chin. Phys. B, 2019, 28(1): 017204.
[12] Preparation of Ga2O3 thin film solar-blind photodetectors based on mixed-phase structure by pulsed laser deposition
Y M Lu(吕有明), C Li(李超), X H Chen(陈相和), S Han(韩瞬), P J Cao(曹培江), F Jia(贾芳), Y X Zeng(曾玉祥), X K Liu(刘新科), W Y Xu(许望颖), W J Liu(柳文军), D L Zhu(朱德亮). Chin. Phys. B, 2019, 28(1): 018504.
[13] Electric field manipulation of multiple nonequivalent Dirac cones in the electronic structures of hexagonal CrB4 sheet
Jinkun Wang(王锦坤), Yajiao Ke(柯亚娇), Qingxing Xie(谢晴兴), Yanli Li(李艳丽), Jiafu Wang(王嘉赋). Chin. Phys. B, 2018, 27(9): 097304.
[14] Electronic properties of silicene in BN/silicene van der Waals heterostructures
Ze-Bin Wu(吴泽宾), Yu-Yang Zhang(张余洋), Geng Li(李更), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077302.
[15] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
No Suggested Reading articles found!