Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087804    DOI: 10.1088/1674-1056/ab9c07
Special Issue: SPECIAL TOPIC — Water at molecular level
TOPICAL REVIEW—Water at molecular level Prev   Next  

Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions

Jinbing Zhang(张晋兵)1,2, Qiang Wang(王强)2, Zexian Cao(曹则贤)2,3
1 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China

Transport properties and the associated structural heterogeneity of room temperature aqueous ionic liquids and especially of super-concentrated electrolyte aqueous solutions have received increasing attention, due to their potential application in ionic battery. This paper briefly reviews the results reported mainly since 2010 about the liquid-liquid separation, aggregation of polar and apolar domains in neat RTILs, and solvent clusters and 3D networks chiefly constructed by anions in super-concentrated electrolyte solutions. At the same time, the dominating effect of desolvation process of metal ions at electrode/electrolyte interface upon the transport of metal ions is stressed. This paper also presents the current understanding of how water affects the anion-cation interaction, structural heterogeneities, the structure of primary coordination sheath of metal ions and consequently their transport properties in free water-poor electrolytes.

Keywords:  super-concentrated electrolyte solutions      room temperature ionic liquids      water effect      structural heterogeneity      transport property  
Received:  24 April 2020      Revised:  01 June 2020      Published:  05 August 2020
PACS: (Solutions and ionic liquids)  
  66.10.-x (Diffusion and ionic conduction in liquids)  
  66.30.jj (Diffusion of water)  
  47.57.eb (Diffusion and aggregation)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11974385 and 91956101), the Fund from the Chinese Academy of Sciences (Grant No. 1731300500030), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030100).

Corresponding Authors:  Qiang Wang, Zexian Cao     E-mail:;

Cite this article: 

Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤) Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions 2020 Chin. Phys. B 29 087804

[1] Zhao D, Wu M, Kou Y and Min E 2002 Catal. Today 74 157
[2] Antonietti M, Kuang D, Smarsly B M and Zhou Y 2004 Angew. Chem. Int. Edit 43 4988
[3] Huddleston J G, Willauer H D, Swatloski R P, Visser A E and Rogers R D 1998 Chem. Commun. 16 1765
[4] Palomar J, Gonzalezmiquel M, Polo A and Rodriguez F 2011 Ind. Eng. Chem. Res. 50 3452
[5] Zhang Y and Chan J Y G 2010 Energ. Environ. Sci. 3 408
[6] De Maria P D 2008 Angew. Chem. Int. Edit 47 6960
[7] Fauzi A H M and Amin N A S 2012 Renew. Sust. Energy Rev. 16 5770
[8] Peng J Y, Huang J, Li W J, Wang Y, Yu X, Hu Y, Chen L and Li H 2018 Chin. Phys. B 27 078201
[9] Wang Y L, Li B, Sarman S, Mocci F, Lu Z Y, Yuan J, Laaksonen A and Fayer M D 2020 Chem. Rev.
[10] Triolo A, Russina O, Bleif H J and Di Cola E 2007 J. Phys. Chem. B 111 4641
[11] Singh T and Kumar A 2007 J. Phys. Chem. B 111 7843
[12] Triolo A, Russina O, Fazio B, Appetecchi G B, Carewska M and Passerini S 2009 J. Chem. Phys. 130 164521
[13] Xu Y, Gao Y, Zhang L, Yao J, Wang C and Li H 2010 Sci. Chin. Chem. 53 1561
[14] Russina O, Fazio B, Schmidt C and Triolo A 2011 Phys. Chem. Chem. Phys. 13 12067
[15] Russina O, Lo Celso F, Plechkova N, Jafta C J, Appetecchi G B and Triolo A 2017 Top. Curr. Chem. (Cham) 375 58
[16] Bernardes C E S, da Piedade M E M and Lopes J N C 2011 J. Phys. Chem. B 115 2067
[17] Murgia S, Monduzzi M, Lopez F and Palazzo G 2013 J. Solution Chem. 42 1111
[18] Dong K, Liu X, Dong H, Zhang X and Zhang S 2017 Chem. Rev. 117 6636
[19] Walden P 1914 Bull. Acad. Impér. Sci. (St. Pétersbourg) 8 405
[20] Wilkes J S and Zaworotko M J 1992 J. Chem. Soc. Chem. Commun. 13 965
[21] Nightingale E R 1959 J. Phys. Chem. 63 1381
[22] Marcus Y 1988 Chem. Rev. 88 1475
[23] van der Vegt N F A, Haldrup K, Roke S, Zheng J R, Lund M and Bakker H J 2016 Chem. Rev. 116 7626
[24] Chen B, Sigmund E E and Halperin W P 2006 Phys. Rev. Lett. 96 145502
[25] Rollet A L, Porion P, Vaultier M, Billard I, Deschamps M, Bessada C and Jouvensal L 2007 J. Phys. Chem. B 111 11888
[26] Schröder U, Wadhawan J D, Compton R G, Marken F, Suarez P A, Consorti C S, de Souza R F and Dupont J 2000 New J. Chem. 24 1009
[27] Tokuda H, Hayamizu K, Ishii K, Susan M A and Watanabe M 2005 J. Phys. Chem. B 109 6103
[28] Wang Y and Voth G A 2005 J. Am. Chem. Soc. 127 12192
[29] Hamaguchi H-O and Ozawa R 2005 Adv. Chem. Phys. 131 85
[30] Hayashi S, Ozawa R and Hamaguchi H 2003 Chem. Lett. 32 498
[31] Saha S, Hayashi S, Kobayashi A and Hamaguchi H 2003 Chem. Lett. 32 740
[32] Ozawa R, Hayashi S, Saha S, Kobayashi A and Hamaguchi H 2003 Chem. Lett. 32 948
[33] Katayanagi H, Hayashi S, Hamaguchi H and Nishikawa K 2004 Chem. Phys. Lett. 392 460
[34] Shigeto S and Hamaguchi H 2006 Chem. Phys. Lett. 427 329
[35] Canongia Lopes J N and Padua A A 2006 J. Phys. Chem. B 110 3330
[36] Hardacre C, Holbrey J D, Mullan C L, Youngs T G and Bowron D T 2010 J. Chem. Phys. 133 074510
[37] Annapureddy H V, Kashyap H K, De Biase P M and Margulis C J 2010 J. Phys. Chem. B 114 16838
[38] Chen S M, Zhang S J, Liu X M, Wang J Q, Wang J J, Dong K, Sun J and Xu B H 2014 Phys. Chem. Chem. Phys. 16 5893
[39] Hayes R, Warr G G and Atkin R 2015 Chem. Rev. 115 6357
[40] Sha M, Dong H, Luo F, Tang Z, Zhu G and Wu G 2015 J. Phys. Chem. Lett. 6 3713
[41] Bystrov S S, Matveev V V, Egorov A V, Chernyshev Y S, Konovalov V A, Balevicius V and Chizhik V I 2019 J. Phys. Chem. B 123 9187
[42] Gao J and Wagner N J 2016 Langmuir 32 5078
[43] Hayes R, Imberti S, Warr G G and Atkin R 2012 Angew. Chem. Int. Edit. 51 7468
[44] Abe H, Takekiyo T, Shigemi M, Yoshimura Y, Tsuge S, Hanasaki T, Ohishi K, Takata S and Suzuki J 2014 J. Phys. Chem. Lett. 5 1175
[45] Kashin A S, Galkin K I, Khokhlova E A and Ananikov V P 2016 Angew. Chem. Int. Edit 55 2161
[46] Suo L M, Hu Y S, Li H, Armand M and Chen L Q 2013 Nat. Commun. 4 1481
[47] Suo L M, Fang Z, Hu Y S and Chen L Q 2016 Chin. Phys. B 25 016101
[48] Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S and Xu K 2015 Science 350 938
[49] Yang C Y, Chen J, Ji X, Pollard T P, Lu X J, Sun C J, Hou S, Liu Q, Liu C M, Qing T T, Wang Y Q, Borodin O, Ren Y, Xu K and Wang C S 2019 Nature 569 245
[50] Chen L, Zhang J, Li Q, Vatamanu J, Ji X, Pollard T P, Cui C, Hou S, Chen J, Yang C, Ma L, Ding M S, Garaga M, Greenbaum S, Lee H S, Borodin O, Xu K and Wang C 2020 ACS Energy Lett. 5 968
[51] Jiang L, Liu L, Yue J, Zhang Q, Zhou A, Borodin O, Suo L, Li H, Chen L, Xu K and Hu Y 2020 Adv. Mater. 32 1904427
[52] Yamada Y, Wang J, Ko S, Watanabe E and Yamada A 2019 Nat. Energy 4 269
[53] Liu C F, Neale Z, Zheng J Q, Jia X X, Huang J J, Yan M Y, Tian M, Wang M S, Yang J H and Cao G Z 2019 Energy Environ. Sci. 12 2273
[54] Luo J Y, Cui W J, He P and Xia Y Y 2010 Nat. Chem. 2 760
[55] Luo J Y and Xia Y Y 2007 Adv. Funct. Mat. 17 3877
[56] Wessells C D, Peddada S V, Huggins R A and Cui Y 2011 Nano Lett. 11 5421
[57] Kim H, Hong J, Park K Y, Kim H, Kim S W and Kang K 2014 Chem. Rev. 114 11788
[58] Zhao L S, Cao Z X and Wang Q 2015 Sci. Rep. 5 15714
[59] Zhao L S, Pan L Q, Ji A L, Cao Z X and Wang Q 2016 Chin. Phys. B 25 075101
[60] Zhao L S, Pan L Q, Cao Z X and Wang Q 2016 J. Phys. Chem. B 120 13112
[61] Wang C C, Lin K, Hu N Y, Zhou X G and Liu S L 2012 Acta Phys. Chim. Sin. 28 1823
[62] Bian H T, Wen X W, Li J B, Chen H L, Han S Z, Sun X Q, Song J A, Zhuang W and Zheng J R 2011 Proc. Natl. Acad. Sci. USA 108 4737
[63] Aurbach D 2000 J. Power Sources 89 206
[64] Dobrynin A V and Rubinstein M 2005 Prog. Polym. Sci. 30 1049
[65] Impey R W, Madden P A and McDonald I R 1983 J. Phys. Chem. 87 5071
[66] Koneshan S, Rasaiah J C, Lynden-Bell R M and Lee S H 1998 J. Phys. Chem. B 102 4193
[67] Borodin O, Suo L, Gobet M, Ren X, Wang F, Faraone A, Peng J, Olguin M, Schroeder M, Ding M S, Gobrogge E, von Wald Cresce A, Munoz S, Dura J A, Greenbaum S, Wang C and Xu K 2017 ACS Nano 11 10462
[68] Fujii K, Matsugami M, Ueno K, Ohara K, Sogawa M, Utsunomiya T and Morita M 2017 J. Phys. Chem. C 121 22720
[69] Lim J, Park K, Lee H, Kim J, Kwak K and Cho M 2018 J. Am. Chem. Soc. 140 15661
[70] Lewis N H C, Zhang Y, Dereka B, Carino E V, Maginn E J and Tokmakoff A 2020 J. Phys. Chem. C 124 3470
[71] Miyazaki K, Takenaka N, Watanabe E, Iizuka S, Yamada Y, Tateyama Y and Yamada A 2019 J. Phys. Chem. Lett. 10 6301
[72] Martins V L, Nicolau B G, Urahata S M, Ribeiro M C C and Torresi R M 2013 J. Phys. Chem. B 117 8782
[73] Verma A, Stoppelman J P and McDaniel J G 2020 Int. J. Mol. Sci. 21 403
[74] Kaintz A, Baker G, Benesi A and Maroncelli M 2013 J. Phys. Chem. B 117 11697
[75] Yago T, Ishii Y and Wakasa M 2014 J. Phys. Chem. C 118 22356
[76] Koddermann T, Ludwig R and Paschek D 2008 Chemphyschem 9 1851
[77] Bayles A V, Valentine C S, Uberruck T, Danielsen S P O, Han S, Helgeson M E and Squires T M 2019 Phys. Rev. X 9 011048
[78] Berthier L and Biroli G 2011 Rev. Mod. Phys. 83 587
[79] Royall C P and Williams S R 2015 Phys. Rep. 560 1
[80] Hapiot P and Lagrost C 2008 Chem. Rev. 108 2238
[81] Zistler M, Wachter P, Wasserscheid P, Gerhard D, Hinsch A, Sastrawan R and Gores H J 2006 Electrochim. Acta 52 161
[82] Wu X Y, Hong J J, Shin W, Ma L, Liu T C, Bi X X, Yuan Y F, Qi Y T, Surta T W, Huang W X, Neuefeind J, Wu T P, Greaney P A, Lu J and Ji X L 2019 Nat. Energy 4 123
[83] Agmon N 1995 Chem. Phys. Lett. 244 456
[84] Borodin O, Self J, Persson K A, Wang C S and Xu K 2020 Joule 4 69
[85] Zhang Y and Maginn E J 2015 J. Phys. Chem. Lett. 6 700
[86] Mogurampelly S, Keith J R and Ganesan V 2017 J. Am. Chem. Soc. 139 9511
[87] Abbott A P 2005 Chemphyschem 6 2502
[88] Abbott A P 2004 Chemphyschem 5 1242
[89] Taylor A W, Licence P and Abbott A P 2011 Phys. Chem. Chem. Phys. 13 10147
[90] Feng G, Chen M, Bi S, Goodwin Z A H, Postnikov E B, Brilliantov N, Urbakh M and Kornyshev A A 2019 Phys. Rev. X 9 021024
[91] Araque J C, Yadav S K, Shadeck M, Maroncelli M and Margulis C J 2015 J. Phys. Chem. B 119 7015
[92] Moreno M, Castiglione F, Mele A, Pasqui C and Raos G 2008 J. Phys. Chem. B 112 7826
[93] Higashi H, Kumita M, Seto T and Otani Y 2017 Mol. Simulat. 43 1430
[94] Menjoge A, Dixon J, Brennecke J F, Maginn E J and Vasenkov S 2009 J. Phys. Chem. B 113 6353
[95] Hanke C G and Lynden-Bell R M 2003 J. Phys. Chem. B 107 10873
[96] Yan C, Li H R, Chen X, Zhang X Q, Cheng X B, Xu R, Huang J Q and Zhang Q 2019 J. Am. Chem. Soc. 141 9422
[97] Hirayama M, Ido H, Kim K, Cho W, Tamura K, Mizuki J i and Kanno R 2010 J. Am. Chem. Soc. 132 15268
[98] Zhou Y, Su M, Yu X, Zhang Y, Wang J G, Ren X, Cao R, Xu W, Baer D R, Du Y, Borodin O, Wang Y, Wang X L, Xu K, Xu Z, Wang C and Zhu Z 2020 Nat. Nanotechnol. 15 224
[99] Wang Q, Huang X F, Li C X, Pan L Q, Wu Z H, Hu T D, Jiang Z, Huang Y Y, Cao Z X, Sun G and Lu K Q 2012 AIP Adv. 2 022107
[100] Sha M L, Zhang F C, Wu G Z, Fang H P, Wang C L, Chen S M, Zhang Y and Hu J 2008 J. Chem. Phys. 128 134504
[101] Shi G S, Liu J, Wang C L, Song B, Tu Y S, Hu J and Fang H P 2013 Sci. Rep. 3 3436
[102] Abe T, Fukuda H, Iriyama Y and Ogumi Z 2004 J. Electrochem. Soc. 151 A1120
[103] Abe T, Sagane F, Ohtsuka M, Iriyama Y and Ogumi Z 2005 J. Electrochem. Soc. 152 A2151
[104] Xu K, von Cresce A and Lee U 2010 Langmuir 26 11538
[105] Mizuno Y, Okubo M, Asakura D, Saito T, Hosono E, Saito Y, Oh-ishi K, Kudo T and Zhou H 2012 Electrochim. Acta 63 139
[106] Li Q, Lu D, Zheng J, Jiao S, Luo L, Wang C M, Xu K, Zhang J G and Xu W 2017 ACS Appl. Mater. Inter. 9 42761
[107] Xu K and von Wald Cresce A 2012 J. Mater. Res. 27 2327
[1] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
[2] Electronic and thermoelectric properties of Mg2GexSn1-x (x=0.25, 0.50, 0.75) solid solutions by first-principles calculations
Kai-yue Li(李开跃), Yong Lu(鲁勇), Yan Huang(黄艳), Xiao-hong Shao(邵晓红). Chin. Phys. B, 2017, 26(6): 066103.
[3] Topological transport in Dirac electronic systems: A concise review
Hua-Ding Song(宋化鼎), Dian Sheng(盛典), An-Qi Wang(王安琦), Jin-Guang Li(李金光), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2017, 26(3): 037301.
[4] Secondary relaxation and dynamic heterogeneity in metallic glasses: A brief review
J C Qiao(乔吉超), Q Wang, D Crespo, Y Yang(杨勇), J M Pelletier. Chin. Phys. B, 2017, 26(1): 016402.
[5] Spin transport properties of a Dresselhaus-polygonal quantum ring
Tang Han-Zhao, Zhai Li-Xue, Shen Man, Liu Jian-Jun. Chin. Phys. B, 2015, 24(3): 030303.
[6] Electronic and transport properties of V-shaped defect zigzag MoS2 nanoribbons
Li Xin-Mei, Long Meng-Qiu, Cui Li-Ling, Xiao Jin, Xu Hui. Chin. Phys. B, 2014, 23(4): 047307.
[7] Transport properties of topological insulators films and nanowires
Liu Yi, Ma Zheng, Zhao Yan-Fei, Meenakshi Singh, Wang Jian. Chin. Phys. B, 2013, 22(6): 067302.
[8] Transport properties of a binary mixture of CO2–N2 from the pair potential energy functions based on a semi-empirical inversion method
Song Bo,Wang Xiao-Po,Yang Fu-Xin,Liu Zhi-Gang. Chin. Phys. B, 2012, 21(4): 045101.
[9] Transport properties in multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling
Tang Han-Zhao, Zhai Li-Xue, Liu Jian-Jun. Chin. Phys. B, 2012, 21(12): 120303.
[10] Transport properties and magnetoresistance in La0.8Te0.2MnO3/ZrO2 composites
Wang Jian-Yuan, Zhai Wei, Jin Ke-Xin, Chen Chang-Le. Chin. Phys. B, 2011, 20(9): 097202.
[11] Theoretical investigation of the thermoelectric transport properties of BaSi2
Peng Hua, Wang Chun-Lei, Li Ji-Chao, Zhang Rui-Zhi, Wang Hong-Chao, Sun Yi. Chin. Phys. B, 2011, 20(4): 046103.
[12] The effects of contact configurations on the rectification of dipyrimidinyl–diphenyl diblock molecular junctions
Zhang Guang-Ping, Hu Gui-Chao, Li Zong-Liang, Wang Chuan-Kui. Chin. Phys. B, 2011, 20(12): 127304.
No Suggested Reading articles found!