Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087803    DOI: 10.1088/1674-1056/aba273
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermal stability of magnetron sputtering Ge-Ga-S films

Lei Niu(牛磊)1, Yimin Chen(陈益敏)1,2, Xiang Shen(沈祥)1, Tiefeng Xu(徐铁峰)1
1 Laboratory of Infrared Materials and Devices&Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, China;
2 Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  Ge-Ga-S thin films were deposited by magnetron sputtering with mean coordination number (MCN) ranging from 2.46 to 2.94. The physical properties of the Ge-Ga-S films, including optical band gap, refractive index, and thickness, vary with the time of heat treatment. Based on the analysis of the topology model, it is concluded that the Ge-Ga-S thin films with components close to the stoichiometric ratio can form the most Ga-S bonds and Ga-S bonds, and the physical properties of the Ge27.3Ga6.3S66.3 (MCN=2.62) film are the most stable. This is an important reference for thin film photonic devices.
Keywords:  chalcogenide thin films      refractive index      optical band gap      thermal stability  
Received:  10 April 2020      Revised:  17 June 2020      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.40.Fy (Semiconductors)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675105, 61775111, and 61904091), Ningbo Optoelectronic Materials and Devices Laboratory (Grant No. 2009B21007), and K. C. Wong Magna Fund in Ningbo University of China.
Corresponding Authors:  Yimin Chen, Xiang Shen     E-mail:  chenyimin@nbu.edu.cn;shenxiang@nbu.edu.cn

Cite this article: 

Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰) Thermal stability of magnetron sputtering Ge-Ga-S films 2020 Chin. Phys. B 29 087803

[1] Zhu E W, Zhao X H, Wang J S and Lin C G 2018 J. Non-Cryst. Solids 489 45
[2] Musgraves J D, Carlie N, Hu J, Petit L, Agarwal A, Kimerling L C and Richardson K A 2011 Acta Mater. 59 5032
[3] Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S and Luther-Davies B 2014 Optical Materials Express 4 1011
[4] Li C R, Dai S X, Zhang Q Y, Shen X, Wang X S, Zhang P Q, Lu L W, Wu Y H and Lv S Q 2015 Chin. Phys. B 24 044208
[5] Yan K L, Vu K, Yang Z Y, Wang R P, Debbarma S, Luther-Davies B and Madden S 2014 Optical Materials Express 4 464
[6] Zakery A and Elliott S R 2003 J. Non-Cryst. Solids 330 1
[7] Chu S S, Wang S F, Tao H Z, Wang Z W, Yang H, Lin C G, Gong Q H and Zhao X J 2007 Chin. Phys. Lett. 24 727
[8] Zhang M J, Yang A P, Peng Y F, Zhang B, Ren H, Guo W, Yang Y, Zhai C C, Wang Y W, Yang Z Y and Tang D Y 2015 Materials Research Bulletin 70 55
[9] Wang R P, Madden S J, Zha C J, Rode A V and Luther-Davies B 2006 J. Appl. Phys. 100 063524
[10] Wang R P, Choi D Y, Rode A V, Madden S J and Luther-Davies B 2007 J. Appl. Phys. 101 113517
[11] Phillips J C 1979 J. Non-Cryst. Solids 34 153
[12] Thorpe M F 1983 J. Non-Cryst. Solids 57 355
[13] Tanaka, Saito, Suzuki and Hasegawa 1985 Phys. Rev. B 32 6853
[14] Kamitakahara, Cappelletti, Boolchand, Halfpap, Gompf, Neumann and Mutka 1991 Phys. Rev. B 44 94
[15] Bulla D A P, Wang R P, Prasad A, Rode A V, Madden S J and Luther-Davies B 2009 Appl. Phys. A 96 615
[16] Wei N N, Yang Z, Pan H B, Zhang F, Liu Y X, Wang R P, Shen X, Dai S X and Nie Q H 2018 Chin. Phys. B 27 067802
[17] Jackson J D 1999 Physics Today 52 78
[18] Ravindra N M, Ganapathy P and Choi J 2007 Infrared Physics & Technology 50 21
[19] Hervé P and Vandamme L K J 1994 Infrared Physics and Technology 35 609
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[4] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[5] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[6] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[7] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[8] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[9] On the structural and optical properties investigation of annealed Zn nanorods in the oxygen flux
Fatemeh Abdi. Chin. Phys. B, 2021, 30(11): 117802.
[10] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[11] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[12] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[13] Refractive index of ionic liquids under electric field: Methyl propyl imidazole iodide and several derivatives
Ji Zhou(周吉), Shi-Kui Dong(董士奎), Zhi-Hong He(贺志宏), Yan-Hu Zhang(张彦虎). Chin. Phys. B, 2020, 29(4): 047801.
[14] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[15] Ultra wide sensing range plasmonic refractive index sensor based on nano-array with rhombus particles
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Xiaoxiong Wu(吴枭雄), Yingwen Su(苏盈文), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), and Hua Yang(杨华)$. Chin. Phys. B, 2020, 29(11): 114204.
No Suggested Reading articles found!