Please wait a minute...
Chin. Phys. B, 0, Vol. (): 74102-074102    DOI: 10.1088/1674-1056/ab84d3
SPECIAL TOPIC—Terahertz physics Prev   Next  

Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band

Tao Xie(谢涛)1, Meng-Ting Chen(陈梦婷)2, Jian Chen(陈健)1, Feng Lu(陆风)3, Da-Wei An(安大伟)3
1 School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2 School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
3 National Satellite Meteorological Centre, China Meteorological Administration, Beijing 100081, China
Abstract  We used discrete dipole approximation (DDA) to examine the scattering and absorption characteristics of spherical ice crystal particles. On this basis, we studied the scattering characteristics of spherical ice crystal particles at different frequencies and non-spherical ice crystal particles with different shapes, aspect ratios, and spatial orientations. The results indicate that the DDA and Mie methods yield almost the same results for spherical ice crystal particles, illustrating the superior calculation accuracy of the DDA method. Compared with the millimeter wave band, the terahertz band particles have richer scattering characteristics and can detect ice crystal particles more easily. Different frequencies, shapes, aspect ratios, and spatial orientations have specific effects on the scattering and absorption characteristics of ice crystal particles. The results provide an important theoretical basis for the design of terahertz cloud radars and related cirrus detection methods.
Keywords:  scattering characteristics      discrete dipole approximation      terahertz      non-spherical ice crystal particles     
Received:  22 January 2020      Published:  05 July 2020
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  92.60.Mt (Particles and aerosols)  
  92.60.Ta (Electromagnetic wave propagation)  
  92.70.Cp (Atmosphere)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61527805 and 41776181).
Corresponding Authors:  Jian Chen, Feng Lu     E-mail:  chjnjnu@163.com;lufeng@cma.gov.cn

Cite this article: 

Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟) Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band 0 Chin. Phys. B 74102

[1] Wang J H, Ge J X, Wei M, Mao B T and Wang J 2013 S1 Semin. Integr. Meteorological Detect. Tech., October 22, 2013, Nanjing, China p. 715
[2] Miloshevich L M and Heymsfield A J 1997 J. Atmos. Ocean. Technol. 14 753
[3] Zhao J W, He M X, Dong L J, Li S X, Liu L Y, Bu S C, Ouyang C M, Wang P F and Sun L L 2019 Chin. Phys. B 28 048703
[4] Wang J, Guo C, Guo W L, Wang L, Shi W Z and Chen X S 2019 Chin. Phys. B 28 046802
[5] Zhang M, Yang Z G, Liu J S, Wang K J, Gong J L and Wang S L 2018 Chin. Phys. B 27 060204
[6] Hu F R, Xu X, Li P, Xu X L and Wang Y E 2017 Chin. Phys. B 26 074219
[7] Liu S G and Zhong R B 2009 J. Univ. Electron. Sci. Technol. Chin. 38 481
[8] Waterman P C 1965 J. Proc. IEEE 53 805
[9] Yang P, Liou K N, Wyser K and Mitchell D 2000 Geophy. Res. 105 4699
[10] Draine B T and Flatau 1994 Opt. Soc. Am. A 11 1491
[11] Xu L S, Chen H B, Ding J L and Xia Z Y 2014 Adv. Earth Sci. 29 903
[12] Wu J X, Wei M, Huang L, Tu H Q and Liu B 2016 J. Meteorol. Sci. 36 63
[13] Ruan L M, Qi H and Wang S G 2008 J. Harbin Inst. Technol. 40 413
[14] Wang Y W, Zhang F, Dong Z W and Sun H F 2016 IEEE International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)
[15] Gu X Y, Wang K J, Yang Z G and Liu J S 2019 Chin. Phys. B 28 098701
[16] Xu D G, Zhu X L, Wang Y Y, Li J N, He Y X, Pang Z B, Cheng H J and Yao J Q 2019 Chin. Phys. B 28 324
[17] Chen A T, Sun H Y, Han Y P, Wang J J and Cui Z W 2019 Chin. Phys. B 28 014201
[18] M Y Y, Huang H C, Hao S B, Tang W C, Zheng Z Y and Zhang Z L 2019 Chin. Phys. B 28 060702
[19] Li X Y, Yang Z L and Zhou H G 2005 J. Yunnan Univ. (Nat. Sci.) S1 150
[20] Yurkin M A and Hoekstra A G 2007 J. Quant. Spectrosc. Radiat. Transfer 106 558
[21] Draine B T 1988 Astrophys. J. 333 848
[22] Yang W H, Schatz G C and Duyne R P V 1995 J. Chem. Phys. 103 869
[23] Bai J Q 2017 Discrete Dipole Method to Study Light Scattering Characteristics of Haze Particles (MS Dissertation) (Xi'an: Xidian University) (in Chinese)
[24] Wu J X, Dou F L, An D W, Chen Q L, Huang L and Tu A Q 2016 J. Infrared Millim. Terahertz Waves 35 377
[25] Shi G Y 2007 Atmospheric Radiology (Beijing: Science Press) p. 372 (in Chinese)
[26] Wu J X, Wei M and Zhou J 2015 Plateau Meteorol. 33 252
[27] Li S L, Liu L, Gao T C, Huang W and Hu S 2016 Acta Phys. Sin. 65 100 (in Chinese)
[28] Draine B T and Flatau P J 2010 User Guide For Discrete Dipole Approximation Code DDSCAT 7.3
[1] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[2] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[3] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[4] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[5] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[6] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[7] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[8] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[9] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[10] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[11] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074101.
[12] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[13] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
[14] Single-shot measurement of THz pulses
Lei Yang(杨磊), Lei Hou(侯磊), Chengang Dong(董陈岗), Wei Shi(施卫). Chin. Phys. B, 2020, 29(5): 057803.
[15] Hydrodynamic simulation of chaotic dynamics in InGaAs oscillator in terahertz region
Wei Feng(冯伟). Chin. Phys. B, 2020, 29(4): 047302.
No Suggested Reading articles found!