Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078707    DOI: 10.1088/1674-1056/ab9294
Special Issue: SPECIAL TOPIC —Terahertz physics
SPECIAL TOPIC—Terahertz physics Prev   Next  

Terahertz polarization conversion and sensing with double-layer chiral metasurface

Zi-Yang Zhang(张子扬)1, Fei Fan(范飞)1, Teng-Fei Li(李腾飞)1, Yun-Yun Ji(冀允允)1, Sheng-Jiang Chang(常胜江)2
1 Institute of Modern Optics, Nankai University, Tianjin 300350, China;
2 Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
Abstract  The terahertz (THz) resonance, chirality, and polarization conversion properties of a double-layer chiral metasurface have been experimentally investigated by THz time domain spectroscopy system and polarization detection method. The special symmetric geometry of each unit cell with its adjacent cells makes a strong chiral electromagnetic response in this metasurface, which leads to a strong polarization conversion effect. Moreover, compared with the traditional THz transmission resonance sensing for film thickness, the polarization sensing characterized by polarization elliptical angle (PEA) and polarization rotation angle (PRA) shows a better Q factor and figure of merit (FoM). The results show that the Q factors of the PEA and PRA reach 43.8 and 49.1 when the interval film is 20 μm, while the Q factor of THz resonance sensing is only 10.6. And these PEA and PRA can play a complementary role to obtain a double-parameter sensing method with a higher FoM, over 4 times than that of resonance sensing. This chiral metasurface and its polarization sensing method provide new ideas for the development of high-efficiency THz polarization manipulation, and open a window to the high sensitive sensing by using THz polarization spectroscopy.
Keywords:  terahertz      chiral metasurface      polarization conversion      sensing  
Received:  21 March 2020      Revised:  05 May 2020      Published:  05 July 2020
PACS:  87.50.U-  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.25.Ja (Polarization)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0701000), the National Natural Science Foundation of China (Grant Nos. 61971242, 61831012, and 61671491), the Natural Science Foundation of Tianjin City, China (Grant No. 19JCYBJC16600), and the Young Elite Scientists Sponsorship Program by Tianjin, China (Grant No. TJSQNTJ-2017-12).
Corresponding Authors:  Fei Fan, Sheng-Jiang Chang     E-mail:  fanfei@nankai.edu.cn;sjchang@nankai.edu.cn

Cite this article: 

Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江) Terahertz polarization conversion and sensing with double-layer chiral metasurface 2020 Chin. Phys. B 29 078707

[1] Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jördens C, Hochrein T and Koch M 2010 Appl. Opt. 49 E48
[2] Tu X C, Kang L L Xin H, Mao Q K, Wan C, Chen J, Jin B B, Ji Z M, Xu W W and Wu P H 2013 Chin. Phys. B 22 040701
[3] Kleine-Ostmann T and Nagatsuma T 2011 J. Infrared Millimeter Terahertz Waves 32 143
[4] Daryoosh Saeedkia 2013 Handbook of terahertz technology for imaging, sensing and communications, Vol. 1 (Woodhead Publishing) pp. 2, 3
[5] Kaveev A K, Kropotov G I, Tsygankova E V, Tzibizov I A, Ganichev S D, Danilov S N, Olbrich P, Zoth C, Kaveeva E G, Zhdanov A I, Ivanov A A, Deyanov R Z and Redlich B 2013 Appl. Opt. 52 B60
[6] Prinz V Y, Naumova E V, Golod S V, Seleznev V A, Bocharov A A and Kubarev V V 2017 Sci. Rep. 7 43334
[7] Rahm M, Li J S and Padilla W J 2013 J. Infrared Millimeter Terahertz Waves 34 1
[8] Mo W C, Wei X L, Wang K J, Li Y and Liu J S 2016 Opt. Express 24 13621
[9] Monticone F and Alu A 2014 Chin. Phys. B 23 047809
[10] Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z and Zhang A X 2015 Chin. Phys. B 24 014201
[11] Smith D R, Pendry J B and Wiltshire M C K 2004 Science 305 788
[12] Valev V K, Baumberg J J, Sibilia C and Thierry V 2013 Adv. Mater. 25 2517
[13] Singh R, Plum E, Menzel C, Rockstuhl C, Azad A K, Cheville R A, Lederer F, Zhang W and Zheludev N I 2009 Phys. Rev. B 80 153104
[14] Collins J T, Kuppe C, Hooper D C, Sibilia C, Centini M and Valev V K 2017 Adv. Opt. Mater. 5 1700182
[15] Wegener M and Linden S 2009 Physics 2 3
[16] Rodger A and Nordén B 1997 Circular dichroism and linear dichroism, Vol. 1 (Oxford: Oxford University Press) p. 2
[17] Liu W W, Chen S Q, Li Z C, Cheng H, Yu P, Li J X and Tian J G 2015 Opt. Lett. 40 3185
[18] Cheng Z and Cheng Y 2019 Opt. Commun. 435 178
[19] Decker M, Zhao R, Soukoulis C M, Linden S and Wegener M 2010 Opt. Lett. 35 1593
[20] O'Hara J F, Withayachumnankul W and Al-Naib I 2012 J. Infrared Millimeter Terahertz Waves 33 245
[21] Beruete Mand Jáuregui-López I 2019 Adv. Opt. Mater. 1900721
[22] Cong L Q, Tan S Y, Yahiaoui R, Yan F P, Zhang W L and Singh R J 2015 Appl. Phys. Lett. 106 031107
[23] O'Hara J F, Singh R, Brener I, Smirnova E, Han J G, Taylor A J and Zhang W L 2008 Opt. Express 16 1786
[24] Chen M, Fan F, Shen S, Wang X H and Chang S J 2016 Appl. Opt. 55 6471
[25] Neu J, Aschaffenburg D J, Williams M R C and Schmuttenmaer C A 2017 IEEE Trans. Terahertz Sci. Technol. 7 755
[26] Aydin K and Ozbay E 2007 J. Appl. Phys. 101 024911
[27] Berry M V 1984 Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 392 45
[1] Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
Fan Liu(刘璠), Xue-Feng Liu(刘雪峰), Ruo-Ming Lan(蓝若明), Xu-Ri Yao(姚旭日), Shen-Cheng Dou(窦申成), Xiao-Qing Wang(王小庆), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2021, 30(1): 014208.
[2] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[3] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[4] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[5] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[6] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[7] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[8] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[9] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[10] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[11] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[12] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[13] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
[14] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[15] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
No Suggested Reading articles found!