INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels |
Mei-Na Zhang(张美娜)1, Yan Shao(邵龑)1,2, Xiao-Lin Wang(王晓琳)1, Xiaohan Wu(吴小晗)1, Wen-Jun Liu(刘文军)1, Shi-Jin Ding(丁士进)1 |
1 State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; 2 Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
|
|
Abstract Photodetectors based on amorphous InGaZnO (a-IGZO) thin film transistor (TFT) and halide perovskites have attracted attention in recent years. However, such a stack assembly of a halide perovskite layer/an a-IGZO channel, even with an organic semiconductor film inserted between them, easily has a very limited photoresponsivity. In this article, we investigate photoresponsive characteristics of TFTs by using CsPbX3 (X=Br or I) quantum dots (QDs) embedded into the a-IGZO channel, and attain a high photoresponsivity over 103A·W-1, an excellent detectivity in the order of 1016 Jones, and a light-to-dark current ratio up to 105 under visible lights. This should be mainly attributed to the improved transfer efficiency of photoelectrons from the QDs to the a-IGZO channel. Moreover, spectrally selective photodetection is demonstrated by introducing halide perovskite QDs with different bandgaps. Thus, this work provides a novel strategy of device structure optimization for significantly improving the photoresponsive characteristics of TFT photodetectors.
|
Received: 22 April 2020
Published: 05 July 2020
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
81.07.Ta
|
(Quantum dots)
|
|
85.30.Tv
|
(Field effect devices)
|
|
81.05.Gc
|
(Amorphous semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61874029) and the National Key Technologies R&D Program of China (Grant No. 2015ZX02102-003). |
Corresponding Authors:
Xiaohan Wu, Shi-Jin Ding
E-mail: wuxiaohan@fudan.edu.cn;sjding@fudan.edu.cn
|
Cite this article:
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进) Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels 0 Chin. Phys. B 88503
|
[1] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488 [2] Chuang C S, Fung T C, Mullins B G, Nomura K, Kamiya T, Shieh H P D, Hosono H and Kanicki J 2008 Proc. Soc. Inf. Display 39 1215 [3] Kamiya T, Nomura K and Hosono H 2010 Sci. Technol. Adv. Mater 11 044305 [4] Fortunato E, Barquinha P and Martins R 2012 Adv. Mater. 24 2945 [5] Heremans P, Tripathi A K, de Jamblinne de Meux A, Smits E C, Hou B, Pourtois G and Gelinck G H 2016 Adv. Mater. 28 4266 [6] Sheng J, Lee H J, Oh S and Park J S 2016 ACS Appl. Mater. Interfaces 8 33821 [7] Zhang Y H, Mei Z X, Liang H L and Du X L 2017 Chin. Phys. B 26 047307 [8] Xiao X, Zhang L, Shao Y, Zhou X, He H and Zhang S 2018 ACS Appl. Mater Interfaces 10 25850 [9] Zan H W, Chen W T, Hsueh H W, Kao S C, Ku M C, Tsai C C and Meng H F 2010 Appl. Phys. Lett. 97 203506 [10] Wang H, Xiao Y, Chen Z, Xu W, Long M and Xu J B 2015 Appl. Phys. Lett. 106 242102 [11] Liu J, Wen H and Shen L 2020 Nanotechnology 31 214001 [12] Xu Y and Lin Q 2020 Appl. Phys. Rev. 7 011315 [13] Wang Y F, Qu F D, Zhou J R, Guo W B, Dong W, Liu C X, Ruan S P 2015 Chin. Phys. Lett. 32 88504 [14] Yang J, Kwak H, Lee Y, Kang Y S, Cho M H, Cho J H, Kim Y H, Jeong S J, Park S, Lee H J and Kim H 2016 ACS Appl. Mater. Interfaces 8 8576 [15] Pak S W, Chu D, Song D Y, Lee S K and Kim E K 2017 Nanotechnology 28 475206 [16] Pei Z, Lai H C, Wang J Y, Chiang W H and Chen C H 2015 IEEE Electron Device Lett. 36 44 [17] Shin S W, Lee K H, Park J S and Kang S J 2015 ACS Appl. Mater. Interfaces 7 19666 [18] Hwang D K, Lee Y T, Lee H S, Lee Y J, Shokouh S H, Kyhm J h, Lee J, Kim H H, Yoo T H, Nam S H, Son D I, Ju B K, Park M C, Song J D, Choi W K and Im S 2016 NPG Asia Mater. 8 e233 [19] Weng Q C, An Z H, Xiong D Y and Zhu Z Q 2015 Chin. Phys. Lett. 32 108503 [20] Du S, Li G, Cao X, Wang Y, Lu H, Zhang S, Liu C and Zhou H 2017 Adv. Electron. Mater. 3 1600325 [21] Sun M, Fang Q, Zhang Z, Xie D, Sun Y, Xu J, Li W, Ren T and Zhang Y 2018 ACS Appl. Mater Interfaces 10 7231 [22] Tak Y J, Kim D J, Kim W G, Lee J H, Kim S J, Kim J H and Kim H J 2018 ACS Appl. Mater. Interfaces 10 12854 [23] Xu X, Yan L, Zou T, Qiu R, Liu C, Dai Q, Chen J, Zhang S and Zhou H 2018 ACS Appl. Mater. Interfaces 10 44144 [24] Na H J, Cho N K, Park J, Lee S E, Lee E G, Im C and Kim Y S 2019 J. Mater. Chem. C 7 14223 [25] Wei S, Wang F, Zou X, Wang L, Liu C, Liu X, Hu W, Fan Z, Ho J C and Liao L 2019 Adv. Mater. 32 1907527 [26] Yu H, Liu X, Yan L, Zou T, Yang H, Liu C, Zhang S and Zhou H 2019 Semicond. Sci. Technol. 34 125013 [27] Liu C K, Tai Q, Wang N, Tang G, Loi H L and Yan F 2019 Adv. Sci. 6 1900751 [28] Wang Y, Song L, Chen Y and Huang W 2019 ACS Photon. 7 10 [29] Zhao Y, Li C and Shen L 2019 InfoMat 1 164 [30] Li C, Wang H, Wang F, Li T, Xu M, Wang H, Wang Z, Zhan X, Hu W and Shen L 2020 Light Sci. Appl. 9 31 [31] Tiebin Yang F L, Rongkun Zheng 2019 ACS Appl. Electron. Mater. 1 1348 [32] Zhang C, Kuang D B and Wu W Q 2020 Small Methods 4 1900662 [33] Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S and Lee J S 2016 Chem. Commun. 52 2067 [34] Bi C, Wang S, Wen W, Yuan J, Cao G and Tian J 2018 J. Phys. Chem. C 122 5151 [35] Bi C, Wang S, Li Q, Kershaw S V, Tian J and Rogach A L 2019 J. Phys. Chem. Lett. 10 943 [36] Lao X, Li X, Agren H and Chen G 2019 Nanomaterials 9 172 [37] Wang Y, Gao M L, Wu J L, Zhang X W 2019 Chin. Phys. B 28 18502 [38] Chen W, Hao J, Hu W, Zang Z, Tang X, Fang L, Niu T and Zhou M 2017 Small 13 1604085 [39] Chen Y, Chu Y, Wu X, Ou-Yang W and Huang J 2017 Adv. Mater. 29 1704062 [40] Davis N J, de la Pena F J, Tabachnyk M, Richter J M, Lamboll R D, Booker E P, Wisnivesky Rocca Rivarola F, Griffiths J T, Ducati C, Menke S M, Deschler F and Greenham N C 2017 J. Phys. Chem. C Nanomater Interfaces 121 3790 [41] Yu Y, Zhang Y, Song X, Zhang H, Cao M, Che Y, Dai H, Yang J, Zhang H and Yao J 2017 Adv. Opt. Mater. 5 1700565 [42] Cai Z, Li F, Xu W, Xia S, Zeng J, He S and Chen X 2018 Nano Res. 11 1447 [43] Liao J F, Xu Y F, Wang X D, Chen H Y and Kuang D B 2018 ACS Appl. Mater. Interfaces 10 42301 [44] Jiang D W, Xiang W, Guo F Y, Hao H Y, Han X, Li X C, Wang G W, Xu Y Q, Yu Q J and Niu Z C 2016 Chin. Phys. Lett. 33 48502 [45] Yong W, Hao L, You L X, Lv C L, Wang H Q, Zhang X Y, Zhang W J, Zhou H, Zhang L, Yang X Y and Wang Z 2019 Chin. Phys. B 28 78502 [46] Li X, Yu D, Cao F, Gu Y, Wei Y, Wu Y, Song J and Zeng H 2016 Adv. Funct. Mater. 26 5903 [47] Shao Y, Wu X, Zhang M N, Liu W J and Ding S J 2019 Nanoscale Res. Lett. 14 122 [48] Fang Y, Dong Q, Shao Y, Yuan Y and Huang J 2015 Nat. Photon. 9 679 [49] Song J, Xu L, Li J, Xue J, Dong Y, Li X and Zeng H 2016 Adv. Mater. 28 4861 [50] Chen Y, Wu X, Chu Y, Zhou J, Zhou B and Huang J 2018 Nanomicro Lett. 10 57 [51] Ma X F, Huang Y Q, Zhi Y S, Wang X, Li P G, Wu Z P and Tang W H 2019 Chin. Phys. B 28 88503 [52] Fang H and Hu W 2017 Adv. Sci. 4 1700323 [53] Long L, Cao D, Fei J, Wang J, Zhou Y, Jiang Z, Jiao Z and Shu H 2019 Chem. Phys. Lett. 734 136719 [54] Azpiroz J M, Mosconi E, Bisquert J and De Angelis F 2015 Energy Environ. Sci. 8 2118 [55] Podzorov V and Gershenson M E 2005 Phys. Rev. Lett. 95 016602 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|