Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054210    DOI: 10.1088/1674-1056/ab81fa
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Narrowband perfect terahertz absorber based on polar-dielectrics metasurface

Meng-Meng Zhao(赵萌萌)1, Shu-Fang Fu(付淑芳)1, Sheng Zhou(周胜)1,2, Yu-Ling Song(宋玉玲)1, Qiang Zhang(张强)1, Yong-Qi Yin(尹永琦)1, Yu-Tian Zhao(赵玉田)1, Hong Liang(梁红)3, Xuan-Zhang Wang(王选章)1
1 Key Laboratory for Photonic and Electronic Bandgap Materials(Ministry of Education), School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China;
2 Department of Electrical Engineering, University of California, Riverside, California 92521, USA;
3 School of Technology, Harbin Normal University, Harbin 150086, China
Abstract  We theoretically propose a narrowband perfect absorber metasurface (PAMS) based on surface phonon polaritons in the terahertz range. The PAMS has unit cell consisting of a silver biarc on the top, a thin polar-dielectric in the middle and a silver layer at the bottom. The phonon polaritons are excited at the interface between the silver biarc and the polar dielectric, and enhance the absorption of the PAMS. The absorption peak is at 36.813 μm and the full width half maximum (FWHM) is nearly 36 nm, independent of the polarization and incidence angle. The electric fields are located at the split of the biarc silver layer and the quality factor Q is 1150. The FWHM decreases with the decreasing split width. When the thickness of the bottom layer is larger than 50 nm, the narrow band and high absorption are insensitive to the thickness of those layers. The designed absorber may have useful applications in terahertz spectra such as energy harvesting, thermal emitter, and sensing.
Keywords:  metasurface      narrowband perfect absorber      terahertz      polar-dielectrics  
Received:  12 December 2019      Revised:  05 February 2020      Published:  05 May 2020
PACS:  78.30.-j (Infrared and Raman spectra)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  42.25.Ja (Polarization)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11204056), Harbin Normal University Master's Innovation Project (Grant Nos. HSDSSCX2018-77 and HSDSSCX2018-79), Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology), Ministry of Education, China (Grant No. KF20171110), and Natural Science Foundation of Heilongjiang Province, China (Grant No. LH2019A028).
Corresponding Authors:  Shu-Fang Fu, Sheng Zhou     E-mail:  shufangfu1975@163.com;zhousheng_wl@126.com

Cite this article: 

Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章) Narrowband perfect terahertz absorber based on polar-dielectrics metasurface 2020 Chin. Phys. B 29 054210

[1] Ding F, Yang Y Q, Deshpande R A and Bozhevolnyi S 2018 Nanophotonics 7 1129
[2] Liu Y H and Zhao X P 2018 Chin. Phys. B 27 117805
[3] Gao H, Pu M B, Li X et al. 2017 Opt. Express. 25 13933
[4] Yang J N, Huang C, Wu X Y, Sun B and Luo X G 2018 Adv. Opt. Mater 6 1800073
[5] Liu B Y, Ren B, Zhao J J et al. 2018 Sci. Rep. 8 15210
[6] Liu G D, Zhai X, Meng H Y et al. 2018 Opt. Express 26 11471
[7] Chen W J, Chen R, Zhou Y and Ma Y G 2019 Opt. Lett. 44 1076
[8] Ashoori V and Shayganmanesh M 2019 Appl. Phys. B 125 40
[9] Akhavan A, Abdolhosseini S, Ghafoorifard H and Habibiyan H 2018 J. Lightwave. Technol. 36 5593
[10] Zhao D W, Yu Y, Wang C L et al. 2017 Nat. Energy. 2 17018
[11] Matsuno Y and Sakurai A 2017 Opt. Commun. 385 118
[12] Ghobadi A, Hajian H, Butun B and Ozbay E 2018 ACS Photon. 5 4203
[13] Pawliszewska M, Duzynska A, Zdrojek M and Sotor J 2019 Opt. Express 27 11361
[14] Li Y Y, Liu Z Q and Zhang H J 2019 Opt. Express 27 11809
[15] Liao Y L and Zhao Y 2015 Plasmonics 10 1219
[16] Kang S, Qian Z Y, Rajaram V et al. 2019 Adv. Opt. Mater. 7 1801236
[17] Luo X, Liu Z M, Wang L L et al. 2018 Appl. Phys. Express 11 105102
[18] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[19] Deng Z L, Deng J H, Zhuang X et al. 2018 Light-Sci. Appl. 7 78
[20] Deng Z L, Deng J H, Zhuang X et al. 2018 Nano Lett. 18 2885
[21] Li Y H, Deng L W, Luo H et al. 2019 Acta Phys. Sin. 68 095201 (in Chinese)
[22] Su X F, Li G H, Yang H et al. 2018 Plasmonics 13 729
[23] Geng Z, Su W, Wang X Y, Jiang Y F and Liu Y 2019 Optik 194 163071
[24] Wang B X, Huang W Q and Wang L L 2017 RSC Adv. 7 42956
[25] Howes A, Nolen J R, Caldwell J D and Valentine J 2020 Adv. Opt. Mater. 8 1901470
[26] Aslan E, Kaya S, Aslan E et al. 2017 Sens. Actuat. B-Chem. 243 617
[27] Li R F, Wu D, Liu Y M et al. 2017 Nanoscale Res. Lett. 12 1
[28] Wu D, Yang L, Liu C et al. 2018 Nanoscale Res. Lett. 13 144
[29] Zhao Z Y, Li G H, Yu F L et al. 2018 Plasmonics 13 2267
[30] Madadi Z, Abedi K, Darvish G and Khatir M 2019 Optik 183 670
[31] Chen C, Wang G, Zhang Z Y and Zhang K 2018 Opt. Lett. 43 3630
[32] Wang L, Sang T, Li J L et al. 2018 J. Mod. Opt. 65 1601
[33] Zhao L, Liu H, He Z H and Dong S K 2018 Opt. Commun. 420 95
[34] Zhang M, Fang J W, Zhang F et al. 2017 Opt. Commun. 405 216
[35] Wu D, Li R F, Liu Y M et al. 2017 Nanoscale Res. Lett. 12 427
[36] Chau Y F C, Chao C T C, Huang H J et al. 2019 Results Phys. 15 102567
[37] Li Y Y, Liu Y, Liu Z Q et al. 2019 Appl. Phys. Express 12 072002
[38] Meng L J, Zhao D, Yang Y Q et al. 2019 Phys. Rev. Appl. 11 044030
[39] He K, Liu Y D and Fu Y Q 2019 Nanomaterials 9 603
[40] Wang L, Sang T, Gao J, Yin X and Qi H L 2018 Appl. Opt. 57 7338
[41] Ray A, Smith H M and Haegel N M 2014 J. Appl. Phys. 115 163709
[42] Caldwell J D, Lindsay L, Giannini V et al. 2015 Nanophotonics 4 44
[43] Khurgin J B 2015 Nat. Nanotechnol. 10 2
[44] Zhang Q, Zhen Z, Liu C P et al. 2019 Opt. Express 27 18628
[45] Smith H M, Zhou Y Z, Ciampi G et al. 2013 Appl. Phys. Lett. 103 091901
[46] Hinson D C and Stevenson J R 1967 Phys. Rev. 159 711
[47] Mitra S S and Massa N E 1982 Lattice Vibrations in Semiconductors in Handbook on Semiconductors ed Paul W (Amsterdam: North-Holland Publishing Company) Vol. 1 Chap. 3
[48] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[1] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[2] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[3] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[4] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[5] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[6] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[7] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[8] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[9] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[10] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[11] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[12] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[13] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
[14] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[15] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
No Suggested Reading articles found!