Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054210    DOI: 10.1088/1674-1056/ab81fa
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Narrowband perfect terahertz absorber based on polar-dielectrics metasurface

Meng-Meng Zhao(赵萌萌)1, Shu-Fang Fu(付淑芳)1, Sheng Zhou(周胜)1,2, Yu-Ling Song(宋玉玲)1, Qiang Zhang(张强)1, Yong-Qi Yin(尹永琦)1, Yu-Tian Zhao(赵玉田)1, Hong Liang(梁红)3, Xuan-Zhang Wang(王选章)1
1 Key Laboratory for Photonic and Electronic Bandgap Materials(Ministry of Education), School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China;
2 Department of Electrical Engineering, University of California, Riverside, California 92521, USA;
3 School of Technology, Harbin Normal University, Harbin 150086, China
Abstract  We theoretically propose a narrowband perfect absorber metasurface (PAMS) based on surface phonon polaritons in the terahertz range. The PAMS has unit cell consisting of a silver biarc on the top, a thin polar-dielectric in the middle and a silver layer at the bottom. The phonon polaritons are excited at the interface between the silver biarc and the polar dielectric, and enhance the absorption of the PAMS. The absorption peak is at 36.813 μm and the full width half maximum (FWHM) is nearly 36 nm, independent of the polarization and incidence angle. The electric fields are located at the split of the biarc silver layer and the quality factor Q is 1150. The FWHM decreases with the decreasing split width. When the thickness of the bottom layer is larger than 50 nm, the narrow band and high absorption are insensitive to the thickness of those layers. The designed absorber may have useful applications in terahertz spectra such as energy harvesting, thermal emitter, and sensing.
Keywords:  metasurface      narrowband perfect absorber      terahertz      polar-dielectrics  
Received:  12 December 2019      Revised:  05 February 2020      Accepted manuscript online: 
PACS:  78.30.-j (Infrared and Raman spectra)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  42.25.Ja (Polarization)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11204056), Harbin Normal University Master's Innovation Project (Grant Nos. HSDSSCX2018-77 and HSDSSCX2018-79), Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology), Ministry of Education, China (Grant No. KF20171110), and Natural Science Foundation of Heilongjiang Province, China (Grant No. LH2019A028).
Corresponding Authors:  Shu-Fang Fu, Sheng Zhou     E-mail:  shufangfu1975@163.com;zhousheng_wl@126.com

Cite this article: 

Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章) Narrowband perfect terahertz absorber based on polar-dielectrics metasurface 2020 Chin. Phys. B 29 054210

[1] Ding F, Yang Y Q, Deshpande R A and Bozhevolnyi S 2018 Nanophotonics 7 1129
[2] Liu Y H and Zhao X P 2018 Chin. Phys. B 27 117805
[3] Gao H, Pu M B, Li X et al. 2017 Opt. Express. 25 13933
[4] Yang J N, Huang C, Wu X Y, Sun B and Luo X G 2018 Adv. Opt. Mater 6 1800073
[5] Liu B Y, Ren B, Zhao J J et al. 2018 Sci. Rep. 8 15210
[6] Liu G D, Zhai X, Meng H Y et al. 2018 Opt. Express 26 11471
[7] Chen W J, Chen R, Zhou Y and Ma Y G 2019 Opt. Lett. 44 1076
[8] Ashoori V and Shayganmanesh M 2019 Appl. Phys. B 125 40
[9] Akhavan A, Abdolhosseini S, Ghafoorifard H and Habibiyan H 2018 J. Lightwave. Technol. 36 5593
[10] Zhao D W, Yu Y, Wang C L et al. 2017 Nat. Energy. 2 17018
[11] Matsuno Y and Sakurai A 2017 Opt. Commun. 385 118
[12] Ghobadi A, Hajian H, Butun B and Ozbay E 2018 ACS Photon. 5 4203
[13] Pawliszewska M, Duzynska A, Zdrojek M and Sotor J 2019 Opt. Express 27 11361
[14] Li Y Y, Liu Z Q and Zhang H J 2019 Opt. Express 27 11809
[15] Liao Y L and Zhao Y 2015 Plasmonics 10 1219
[16] Kang S, Qian Z Y, Rajaram V et al. 2019 Adv. Opt. Mater. 7 1801236
[17] Luo X, Liu Z M, Wang L L et al. 2018 Appl. Phys. Express 11 105102
[18] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[19] Deng Z L, Deng J H, Zhuang X et al. 2018 Light-Sci. Appl. 7 78
[20] Deng Z L, Deng J H, Zhuang X et al. 2018 Nano Lett. 18 2885
[21] Li Y H, Deng L W, Luo H et al. 2019 Acta Phys. Sin. 68 095201 (in Chinese)
[22] Su X F, Li G H, Yang H et al. 2018 Plasmonics 13 729
[23] Geng Z, Su W, Wang X Y, Jiang Y F and Liu Y 2019 Optik 194 163071
[24] Wang B X, Huang W Q and Wang L L 2017 RSC Adv. 7 42956
[25] Howes A, Nolen J R, Caldwell J D and Valentine J 2020 Adv. Opt. Mater. 8 1901470
[26] Aslan E, Kaya S, Aslan E et al. 2017 Sens. Actuat. B-Chem. 243 617
[27] Li R F, Wu D, Liu Y M et al. 2017 Nanoscale Res. Lett. 12 1
[28] Wu D, Yang L, Liu C et al. 2018 Nanoscale Res. Lett. 13 144
[29] Zhao Z Y, Li G H, Yu F L et al. 2018 Plasmonics 13 2267
[30] Madadi Z, Abedi K, Darvish G and Khatir M 2019 Optik 183 670
[31] Chen C, Wang G, Zhang Z Y and Zhang K 2018 Opt. Lett. 43 3630
[32] Wang L, Sang T, Li J L et al. 2018 J. Mod. Opt. 65 1601
[33] Zhao L, Liu H, He Z H and Dong S K 2018 Opt. Commun. 420 95
[34] Zhang M, Fang J W, Zhang F et al. 2017 Opt. Commun. 405 216
[35] Wu D, Li R F, Liu Y M et al. 2017 Nanoscale Res. Lett. 12 427
[36] Chau Y F C, Chao C T C, Huang H J et al. 2019 Results Phys. 15 102567
[37] Li Y Y, Liu Y, Liu Z Q et al. 2019 Appl. Phys. Express 12 072002
[38] Meng L J, Zhao D, Yang Y Q et al. 2019 Phys. Rev. Appl. 11 044030
[39] He K, Liu Y D and Fu Y Q 2019 Nanomaterials 9 603
[40] Wang L, Sang T, Gao J, Yin X and Qi H L 2018 Appl. Opt. 57 7338
[41] Ray A, Smith H M and Haegel N M 2014 J. Appl. Phys. 115 163709
[42] Caldwell J D, Lindsay L, Giannini V et al. 2015 Nanophotonics 4 44
[43] Khurgin J B 2015 Nat. Nanotechnol. 10 2
[44] Zhang Q, Zhen Z, Liu C P et al. 2019 Opt. Express 27 18628
[45] Smith H M, Zhou Y Z, Ciampi G et al. 2013 Appl. Phys. Lett. 103 091901
[46] Hinson D C and Stevenson J R 1967 Phys. Rev. 159 711
[47] Mitra S S and Massa N E 1982 Lattice Vibrations in Semiconductors in Handbook on Semiconductors ed Paul W (Amsterdam: North-Holland Publishing Company) Vol. 1 Chap. 3
[48] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[4] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[7] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[8] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[9] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[10] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[11] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[12] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[13] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[14] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[15] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
No Suggested Reading articles found!