Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078706    DOI: 10.1088/1674-1056/ab9295
Special Issue: SPECIAL TOPIC —Terahertz physics
SPECIAL TOPIC—Terahertz physics Prev   Next  

Polarization conversion metasurface in terahertz region

Chen Zhou(周晨)1, Jiu-Sheng Li(李九生)1,2
1 Centre for THz Research, China Jiliang University, Hangzhou 310018, China;
2 China Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China
Abstract  Polarization conversion is a very important electromagnetic wave manipulation method. In this paper, we investigate a high-efficiency linear-to-circular polarization and cross-polarization converter by utilizing coding metasurface. The coding particle consists of top layer metal pattern and bottom metal plate sandwiched with square F4B dielectric, which can manipulate the linear-to-circular polarization and cross-polarization converter of the reflected wave simultaneously. In the terahertz frequency range of 1.0 THz-2.0 THz, the reflection magnitudes reach approximately 90% and the axial ratio is less than 3 dB. The proposed polarization converter may lead to advances in a variety of applications such as security, microscopy, information processing, stealth technology, and data storage.
Keywords:  terahertz wave      polarization conversion      metasurface  
Received:  29 March 2020      Revised:  24 April 2020      Published:  05 July 2020
PACS:  87.50.-a (Effects of electromagnetic and acoustic fields on biological systems)  
  87.50.up (Dosimetry/exposure assessment)  
  87.10.Vg (Biological information)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFF0200306) and the National Natural Science Foundation of China (Grant Nos. 61871355 and 61831012).
Corresponding Authors:  Jiu-Sheng Li     E-mail:  jshli@126.com

Cite this article: 

Chen Zhou(周晨), Jiu-Sheng Li(李九生) Polarization conversion metasurface in terahertz region 2020 Chin. Phys. B 29 078706

[1] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[2] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[3] Smith D R, Padilla W J, Vier D, Nemat-Nasser S and Schultz S 2000 Phys. Rev. 84 4184
[4] Sui S, Ma H, Wang J F, Pang Y Q, Feng M D, Xu Z and Qu S B 2017 J. Phys. D: Appl. Phys. 51 065603
[5] Li Y F, Zhang J M, Qu S B, Wang J F, Chen H Y, Xu Z and Zhang A X 2014 Appl. Phys. Lett. 104 221110
[6] Wen D D, Yue F Y, Li G X, Zheng G X, Chan K L, Chen S M, Chen M, Li K F, Wong P W H, Cheah K W, Pun E Y B, Zhang S and Chen X Z 2015 Nat. Commun. 6 8241
[7] Sun G, Chen H, Cheng S and Zhao X 2017 Physica B 525 127
[8] Xu H, Tang S, Ling X, Luo W and Zhou L 2017 Ann. Physik 529 1700045
[9] Sui S, Ma H, Wang J F, Feng M D, Pang Y Q, Xia S, Xu Z and Qu S B 2016 Appl. Phys. Lett. 109 014104
[10] Sun H Y, Gu C Q, Chen X L, Li Z, Liu L L and Martin F 2017 J. Appl. Phys. 121 174902
[11] Gao X, Han X, Cao W P, Li H O, Ma H F and Cui T J 2015 IEEE Trans. Antenn Propag. 63 3522
[12] Liu C B, Bai Y, Zhao Q, Yang Y H, Chen H S, Zhou J and Qiao L J 2016 Sci. Rep. 6 34819
[13] Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, OuYang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L and Chen Q 2016 Light Sci. Appl. 5 e16076
[14] Zhuang Y Q, Wang G M, Cai T and Zhang Q F 2018 Opt. Express 26 3594
[15] Zhu H and Semperlotti F 2016 Phys. Rev. Lett. 117 034302
[16] Jing Y, Li Y F, Zhang J F, Wang J, Feng M C, Ma H and Qu S B 2019 Opt. Express 27 21520
[17] Jing Y, Li Y, Zhang J M, Wang J, Feng M, Sui S, Qiu T, Ma H and Qu S 2018 J. Phys. D: Appl. Phys. 51 475103
[18] Cui T J, Qi M Q, Wan X, Zhao J and Cheng Q 2014 Light Sci. Appl. 3 e218
[1] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[2] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[3] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[4] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[5] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[6] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
[7] Single-shot measurement of THz pulses
Lei Yang(杨磊), Lei Hou(侯磊), Chengang Dong(董陈岗), Wei Shi(施卫). Chin. Phys. B, 2020, 29(5): 057803.
[8] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[9] Ultra-wideband linear-to-circular polarization conversion metasurface
Bao-Qin Lin(林宝勤)†, Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), and Yan-Wen Wang(王衍文). Chin. Phys. B, 2020, 29(10): 104205.
[10] Pancharatnam-Berry metasurface for terahertz wave radar cross section reduction
Shao-He Li(李绍和), Jiu-Sheng Li(李九生). Chin. Phys. B, 2019, 28(9): 094210.
[11] Flexible broadband polarization converter based on metasurface at microwave band
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春). Chin. Phys. B, 2019, 28(7): 074205.
[12] Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface
Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇). Chin. Phys. B, 2019, 28(3): 034204.
[13] Manipulation of acoustic wavefront by transmissive metasurface based on pentamode metamaterials
Ying Liu(刘颖), Yi-Feng Li(李义丰), Xiao-Zhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(2): 024301.
[14] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[15] Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface
Kaiyue Liu(刘凯越), Guangming Wang(王光明), Tong Cai(蔡通), Wenlong Guo(郭文龙), Yaqiang Zhuang(庄亚强), Gang Liu(刘刚). Chin. Phys. B, 2018, 27(8): 084101.
No Suggested Reading articles found!