Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 047302    DOI: 10.1088/1674-1056/ab696f
SPECIAL TOPIC—Terahertz physics Prev   Next  

Hydrodynamic simulation of chaotic dynamics in InGaAs oscillator in terahertz region

Wei Feng(冯伟)
Department of Physics, Jiangsu University, Zhenjiang 212013, China
Abstract  Hydrodynamic calculations of the chaotic behaviors in n+nn+ In0.53Ga0.47As devices biased in terahertz (THz) electric field have been carried out. Their different transport characteristics have been carefully investigated by tuning the n-region parameters and the applied ac radiation. The oscillatory mode is found to transit between synchronization and chaos, as verified by the first return map. The transitions result from the mixture of the dc induced oscillation and the one driven by the ac radiation. Our findings will give further and thorough understanding of electron transport in In0.53Ga0.47As terahertz oscillator, which is a promising solid-state THz source.
Keywords:  terahertz      chaotic      current oscillation  
Received:  12 December 2019      Revised:  03 January 2020      Published:  05 April 2020
PACS:  73.61.Ey (III-V semiconductors)  
  73.50.Fq (High-field and nonlinear effects)  
  85.30.Fg (Bulk semiconductor and conductivity oscillation devices (including Hall effect devices, space-charge-limited devices, and Gunn effect devices))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604126) and China Scholarship Council (Grant No. 201808695016).
Corresponding Authors:  Wei Feng     E-mail:  wfeng@ujs.edu.cn

Cite this article: 

Wei Feng(冯伟) Hydrodynamic simulation of chaotic dynamics in InGaAs oscillator in terahertz region 2020 Chin. Phys. B 29 047302

[1] Tonouchi M 2007 Nat. Photon. 1 97
[2] Hangyo M 2015 Jpn. J. Appl. Phys. 54 120101
[3] Yang X, Zhao X, Yang K, Liu Y, Liu Y, Fu W and Luo Y 2016 Trends Biotechnol. 34 810
[4] Woolard D L, Brown E R, Pepper M and Kemp M 2005 Proc. IEEE 93 1722
[5] Zhou K, Li H, Wan W J, Li Z P, Liao X Y and Cao J C 2019 Appl. Phys. Lett. 114 191106
[6] Mao X R, Xie S, Zhu C J, Geng Z X and Chen H D 2018 AIP Adv. 8 065323
[7] Kasagi K, Suzuki S and Asada M 2019 J. Appl. Phys. 125 151601
[8] Samoska L A 2011 IEEE Trans. Terahertz Sci. Technol. 1 9
[9] Krömer H 1958 Phys. Rev. 109 1856
[10] Gunn J B 1963 Solid State Commun. 88 883
[11] Karishy S 2015 Lith. J. Phys. 55 305
[12] Feng W 2012 Chin. Phys. Lett. 29 017304
[13] Kitagawa S 2017 Jpn. J. Appl. Phys. 56 058002
[14] Perez S, Gonzlez T, Pardo D and Mateos J 2008 J. Appl. Phys. 103 094516
[15] Khalid A, Pilgrim N J, Dunn G M, Holland M C and Stanley C R 2007 IEEE Electron Device Lett. 28 849
[16] Khald A, Dunn G M, Macpherson R F, et al. 2014 J. Appl. Phys. 115 114502
[17] Choo K Y and Ong D S 2004 J. Appl. Phys. 96 5649
[18] Mookerjea S, Mohata D, Mayer T, Narayanan V and Datta S 2010 IEEE Electron Device Lett. 31 564
[19] Costa J, Peczalski A and Shur M 1989 J. Appl. Phys. 65 5205
[20] Gruzhinskis V, Starikov E and Shiktorov P 1992 Appl. Phys. Lett. 61 1456
[21] Gruzhinskis V, Starikov E, Shiktorov P, Reggiani L and Varani L 1994 Phys. Rev. B 49 13650
[22] Gruzhinskis V, Starikov E and Shiktorov P 1994 J. Appl. Phys. 76 5260
[23] Cao J C and Lei X L 1999 Phys. Rev. B 60 1871
[24] Cao J C and Lei X L 1999 Phys. Rev. B 59 2199
[25] Ziade P, et al. 2010 Semicond. Sci. Technol. 25 075012
[26] Zhang Y H, Kastrup J, Klann R, Ploog K H and Grahn H T 1996 Phys. Rev. Lett. 77 3001
[27] Cao J C, Liu H C and Lei X L 2001 Phys. Rev. B 63 115308
[1] Design and FPGA implementation of multi-wing chaotic switched systems based on a quadratic transformation
Qing-Yu Shi(石擎宇), Xia Huang(黄霞), Fang Yuan(袁方), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(2): 020507.
[2] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[3] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[4] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[5] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng(郑俊), Han-Ping Hu(胡汉平). Chin. Phys. B, 2020, 29(9): 090502.
[6] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[7] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[8] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[9] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[10] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[11] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[12] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[13] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[14] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
[15] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
No Suggested Reading articles found!