Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077804    DOI: 10.1088/1674-1056/ab8dae
Special Issue: SPECIAL TOPIC —Terahertz physics
SPECIAL TOPIC—Terahertz physics Prev   Next  

Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal

Fan Liu(刘凡)1, Zuanming Jin(金钻明)1,2,5, Xiumei Liu(刘秀梅)2, Yuqing Fang(方雨青)1, Jiajia Guo(国家嘉)2, Yan Peng(彭滟)1,5, Zhenxiang Cheng(程振祥)3, Guohong Ma(马国宏)2,4, Yiming Zhu(朱亦鸣)1,5
1 Shanghai Key Laboratory of Modern Optical System, and Engineering Research Center of Optical Instrument and System(Ministry of Education), University of Shanghai for Science and Technology, Shanghai 200093, China;
2 Department of Physics, Shanghai University, Shanghai 200444, China;
3 Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, Australia;
4 SIOM & STU Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China;
5 Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
Abstract  THz time-domain spectroscopy (THz-TDS) is used to study the THz-optical properties of a single crystal bismuth ferrite BiFeO3 (BFO). It can be found that the anisotropy of BiFeO3 is strongly dependent on the temperature. A giant birefringence up to around 3.6 is observed at 1 THz. The presence of a spatially modulated cycloidal antiferromagnetic structure leads to spin cycloid resonances (SCR) ψ and Φ, corresponding to the out-of-plane and in-plane modes of the spin cycloid, respectively. We distinguish the SCR with respect to their response to orthogonal polarizations of the electric fields of the incident THz beam. In addition, we observe a resonance appearing below 140 K, which might be interpreted as an electromagnon mode and related to a spin reorientation transition. Our present observations present that the temperature and polarization, as the external control parameters, can be used to modulate the THz optical properties of BFO single crystal.
Keywords:  time resolved terahertz spectroscopy      dielectric anisotropy      spin cycloid resonance  
Received:  29 March 2020      Revised:  21 April 2020      Published:  05 July 2020
PACS:  78.47.J- (Ultrafast spectroscopy (<1 psec))  
  78.20.-e (Optical properties of bulk materials and thin films)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.30.Ds (Spin waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975110, 11674213, 61735010, and 11604202), the 111 Project, China (Grant No. D18014), the International Joint Lab Program supported by Science and Technology Commission Shanghai Municipality, China (Grant No. 17590750300), the Key Project supported by Science and Technology Commission Shanghai Municipality, China (Grant No. YDZX20193100004960), Science and Technology Commission of Shanghai Municipality, China (Shanghai Rising-Star Program 18QA1401700), and Shanghai Educational Development Foundation, China (Chen Guang Project 16CG45).
Corresponding Authors:  Zuanming Jin, Guohong Ma, Yiming Zhu     E-mail:  physics_jzm@usst.edu.cn;ghma@staff.shu.edu.cn;ymzhu@usst.edu.cn

Cite this article: 

Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣) Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal 2020 Chin. Phys. B 29 077804

[1] Spaldin N A and Ramesh R 2019 Nat. Mater. 18 203
[2] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[3] Cheng Z X, Wang X L, Du Y and Dou S X 2010 J. Phys. D: Appl. Phys. 43 242001
[4] Catalan G and Scott J F 2009 Adv. Mater. 21 2463
[5] Sosnowska I, Neumaier T P and Steichele E 1982 J. Phys. C 15 4835
[6] You L, Zheng F, Fang L, Zhou Y, Tan L Z, Zhang Z Y, Ma G H, Schmidt D, Rusydi A, Wang L, Chang L, Rappe A M and Wang J L 2018 Sci. Adv. 4 3438
[7] Choi T, Lee S, Choi Y J, Kiryukhin V and Cheonget S W 2009 Science 324 63
[8] Kundys B, Viret M, Colson D and Kundys D O 2010 Nat. Mater. 9 803
[9] Jin Z, Xu Y, Zhang Z, Lin X, Ma G, Cheng Z and Wang X 2012 Appl. Phys. Lett. 101 242902
[10] Ruello P, Ruello P, Pezeril T, Avanesyan S, Vaudel G, Gusev V, Infante I C and Dkhil B 2012 Appl. Phys. Lett. 100 212906
[11] Jin Z, Xu Y, Zhang Z, Li G, Lin X, Ma G, Cheng Z and Wang X 2012 Appl. Phys. Lett. 100 071105
[12] Kumar A, Rai R C, Podraza N J, Denev S, Ramirez M, Chu Y H, Martin L W, Ihlefeld J, Heeg T, Schubert J, Schlom D G, Orenstein J, Ramesh R, Collins R W, Musfeldt L J and Gopalan V 2008 Appl. Phys. Lett. 92 121915
[13] Talbayev D, Lee S, Cheong S W and Taylor A J 2008 Appl. Phys. Lett. 93 212906
[14] Takahashi K, Kida N and Tonouchiet M 2006 Phys. Rev. Lett. 96 117402
[15] Matsuda M, Fishman R S, Hong T, Lee C H, Ushiyama T, Yanagisawa Y, Tomioka Y and Ito T 2012 Phys. Rev. Lett. 109 067205
[16] Jeong J, Goremychkin E A, Guidi T, Nakajima K, Jeon G S, Kim S A, Furukawa S, Kim Y B, Lee S, Kiryukhin V, Cheong S W and Park J G 2012 Phys. Rev. Lett. 108 077202
[17] Cazayous M, Gallais Y, Sacuto A, Sousa R, Lebeugle D and Colson D 2008 Phys. Rev. Lett. 101 037601
[18] Rovillain P, Cazayous M, Gallais Y, Sacuto A, Lobo R P S M, Lebeugle D and Colson D 2009 Phys. Rev. B 79 180411
[19] Fishman R S, Lee J H, Bordács S, Kézsmárki I, Nagel U and Rõõm T 2015 Phys. Rev. B 92 094422
[20] Gaikwad V M and Acharya S A 2013 J. Appl. Phys. 114 193901
[21] Ruette B, Zvyagin S, Pyatakov A P, Bush A, Li J F, Belotelov V I, Zvezdin A K and Viehland D 2004 Phys. Rev. B 69 064114
[22] Caspers C, Gandhi V P, Magrez A, Rijk E and Ansermet J P 2016 Appl. Phys. Lett. 108 241109
[23] Bialek M, Ito T, Ronnow H and Ansermet J P 2019 Phys. Rev. B 99 064429
[24] Talbayev D, Trugman S A, Lee S, Yi H T, Cheong S W and Taylor A J 2011 Phys. Rev. B 83 094403
[25] Kézsmárki I, Nagel U, Bordács S, Fishman R S, Lee J H, Yi H T, Cheong S W and Rõõm T 2015 Phys. Rev. Lett. 115 127203
[26] Chen F, Goodfellow J, Liu S, Grinberg I, Hoffmann M C, Damodaran A R, Zhu Y, Zalden P, Zhang X, Takeuchi I, Rappe A M, Martin L W, Wen H and Lindenberg A M 2015 Adv. Mater. 27 6371
[27] Liu X, Zhang Z, Lin X, Zhang K, Jin Z, Cheng Z and Ma G 2016 Opt. Express 24 26618
[28] Feng H J, Yang K, Deng W, Li M, Wang M, Duan B, Liu F, Tian J and Guo X 2015 Phys. Chem. Chem. Phys. 17 26930
[29] Guzelturk B, Mei A B, Zhang L, Tan L Z, Donahue P, Singh A G, Schlom D G, Martin L W and Lindenberg A 2020 Nano Lett. 20 145
[30] Jepsen P U, Cooke D G and Koch M 2011 Laser Photon. Rev. 5 124
[31] Ulbricht R, Hendry E, Shan J, Heinz T F and Bonn M 2011 Rev. Mod. Phys. 83 543
[32] Li J G, Yang S M, Chen X, Zhuang N F, Zhu Q B, Wu A H, Lin X, Ma G H, Jin Z M and Yao J Q 2019 Chin. Phys. Lett. 36 044203
[33] Yaakob M K, M F M Taib M F M, Lu L, Hassan O H and Yahya M Z A 2015 Mater. Res. Express 2 116101
[34] Rivera J P and Schmid H 1997 Ferroelectrics 204 23
[35] Sun Y M, Mao Z L, Hou B H, Liu G Q and Wang L 2007 Chin. Phys. Lett. 24 414
[36] Kamba S, Nuzhnyy D, Savinov M, Šebek J, Petzelt J, Prokleška J, Haumont R and Kreisel J 2007 Phys. Rev. B 75 024403
[37] Seizi N, Naoki T, Hideaki K, Mitsuo W T and Seiji K 2002 Phys. Med. Biol. 47 3771
[38] Masato S, Noriaki K, Sachio H and Hiroshi O 2015 ACS Photon. 2 1373
[39] Mavrona E, Chodorow U, Barnes M E, Parka J, Palka N, Saitzek S, Blach J F, Apostolopoulos V and Kaczmarek M 2015 AIP Adv. 5 077143
[40] Fishman R S, Furukawa N, Haraldsen J T, Matsuda M and Miyahara S 2012 Phys. Rev. B 86 220402
[41] Fishman R S 2013 Phys. Rev. B 87 224419
[42] Fishman R S, Haraldsen J, Furukawa N and Miyahara S 2013 Phys. Rev. B 87 134416
[43] Chen H B and Li Y Q 2013 Appl. Phys. Lett. 102 252906
[44] Singh M, Katiyar R and Scott J 2008 J. Phys.: Condens. Matter 20 252203
[45] Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H and Yao J Q 2019 Acta Phys. Sin. 68 167501 (in Chinese)
[46] Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M and Zhuang S L 2019 Front. Inform. Technol. Electron. Eng. 20 591
[47] Feng H J, Wang M, Duan B, Tian J and Guo X 2015 J. Alloys Compd. 628 311
[48] Wehmeier L, NCorenberg T, Oliveira T V A G, Klopf J M, Yang S Y, Martin L W, Ramesh R, Eng L M and Kehr S C 2020 Appl. Phys. Lett. 116 071103
[1] Calculating the dielectric anisotropy of nematic liquid crystals: a reinvestigation of the Maier--Meier theory
Zhang Ran, He Jun, Peng Zeng-Hui, Xuan Li. Chin. Phys. B, 2009, 18(7): 2885-2892.
[2] Temperature dependence of ratio between dielectric anisotropy and order parameter in fluorinated nematic liquid crystals
Ma Heng, Sun Rui-Zhi, Li Zhen-Xin, Liu Yu-Fang. Chin. Phys. B, 2008, 17(1): 255-258.
No Suggested Reading articles found!