Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084212    DOI: 10.1088/1674-1056/aba945
Special Issue: SPECIAL TOPIC —Terahertz physics
TOPICAL REVIEW—Terahertz physics Prev   Next  

Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors

Zhi-Yong Tan(谭智勇)1,2, Wen-Jian Wan(万文坚)1, Jun-Cheng Cao(曹俊诚)1,2
1 Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

As semiconductor devices, the terahertz quantum-cascade laser is a coherent source based on intersubband transitions of unipolar carriers while the terahertz quantum-well photodetector is a kind of detector which matches the laser frequency. They are solid-state, electrically operated, and can be easily integrated with other components. This paper reviews the state of the art for the design, working performance, and future directions of the two devices. Their applications in photoelectric characterization and imaging are also discussed.

Keywords:  terahertz      semiconductor device      photoelectric characterization      imaging system  
Received:  04 May 2020      Revised:  15 July 2020      Published:  05 August 2020
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  42.30.-d (Imaging and optical processing)  
  95.85.Gn (Far infrared (10-300 μm))  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFA0701005), the National Natural Science Foundation of China (Grant Nos. 61927813, 61775229, 61704181, and 61991432), and the Shanghai International Cooperation Project, China (Grant No. 18590780100).

Corresponding Authors:  Jun-Cheng Cao     E-mail:  jccao@mail.sim.ac.cn

Cite this article: 

Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚) Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors 2020 Chin. Phys. B 29 084212

[1] Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Nature 417 156
[2] Liu H C, Song C Y, SpringThorpe A J and Cao J C 2004 Appl. Phys. Lett. 84 4068
[3] Tonouchi M 2007 Nat. Photon. 1 97
[4] Liang G Z, Liu T and Wang Q J 2017 IEEE J. Sel. Top. Quant. 23 1200118
[5] Mittleman D M 2018 Opt. Express 26 9417
[6] Sizov F 2018 Semicond. Sci. Technol. 33 123001
[7] Tan Z Y, Wan W J, Li H and Cao J C 2017 Chin. Opt. 10 68(in Chinese)
[8] Tan Z Y and Cao J C 2019 Chin. J. Lasers 46 0614004(in Chinese)
[9] Bosco L, Franckié M, Scalari G, Beck M, Wacker A and Faist J 2019 Appl. Phys. Lett. 115 010601
[10] Wan W J, Li H and Cao J C 2018 Opt. Express 26 980
[11] Li L H, Chen L, Freeman J R, Salih M, Dean P, Davies A G and Linfield E H 2017 Electron. Lett. 53 799
[12] Wienold M, Röben B, Schrottke L, Sharma R, Tahraoui A, Biermann K and Grahn H T 2014 Opt. Express 22 3334
[13] Wang X M, Shen C L, Jiang T, Zhan Z Q, Deng Q H, Li W H, Wu W D, Yang N, Chu W D and Duan S Q 2016 AIP Adv. 6 075210
[14] Vitiello M S, Consolino L, Bartalini S, Taschin A, Tredicucci A, Inguscio M and De Natale P 2012 Nat. Photon. 6 525
[15] Li H, Wan W J, Tan Z Y, Fu Z L, Wang H X, Zhou T, Li Z P, Wang C, Guo X G and Cao J C 2017 Sci. Rep. 7 3452
[16] Zhou Z T, Zhou T, Zhang S Q, Shi Z F, Chen Y, Wan W J, Li X X, Chen X Z, Corder S N G, Fu Z L, Chen L, Mao Y, Cao J C, Omenetto F G, Liu M K, Li H and Tao T H 2018 Adv. Sci. 5 1700982
[17] Kliebisch O, Heinecke D C, Barbieri S, Santarelli G, Li H, Sirtori C and Dekorsy T 2018 Optica 5 1431
[18] Richter H, Greiner-Bär M, Pavlov S G, Semenov A D, Wienold M, Schrottke L, Giehler M, Hey R, Grahn H T and Hübers H W 2010 Opt. Express 18 10177
[19] Kumar S 2011 IEEE J. Sel. Top. Quant. 17 38
[20] Li L H, Chen L, Zhu J, Freeman J, Dean P, Valavanis A, Davies A G and Linfield E H 2014 Electron. Lett. 50 309
[21] Kumar S, Hu Q and Reno J L 2009 Appl. Phys. Lett. 94 131105
[22] Williams B S, Callebaut H, Kumar S and Hu Q 2003 Appl. Phys. Lett. 82 1015
[23] Scalari G, Hoyler N and Faist J 2005 Appl. Phys. Lett. 86 181101
[24] Liu H C, Wäechter M, Ban D, Wasilewski Z R, Buchanan M, Aers G C, Cao J C, Feng S L, Williams B S and Hu Q 2005 Appl. Phys. Lett. 87 141102
[25] Kumar S, Williams B S, Hu Q and Reno J L 2006 Appl. Phys. Lett. 88 121123
[26] Worrall C, Alton J, Houghton M, Barbieri S, Beere H E, Ritchie D and Sirtori C 2006 Opt. Express 14 171
[27] Lü J T and Cao J C 2006 Appl. Phys. Lett. 88 061119
[28] Li H, Cao J C, Tan Z Y and Feng S L 2008 J. Appl. Phys. 104 103101
[29] Freeman J R, Marshall O P, Beere H E and Ritchie D A 2008 Opt. Express 16 19830
[30] Scalari G, Walther C and Faist J 2006 Appl. Phys. Lett. 88 141102
[31] Kumar S, Chan CWI, Hu Q and Reno J L 2009 Appl. Phys. Lett. 95 141110
[32] Wade A, Fedorov G, Smirnov D, Kumar S, Williams B S, Hu Q and Reno J L 2009 Nat. Photon. 3 41
[33] Kumar S and Hu Q 2009 Phys. Rev. B 80 245316
[34] Freeman J R, Madéo J, Brewer A, Dhillon S, Marshall O P, Jukam N, Oustinov D, Tignon J, Beere H E and Ritchie D A 2010 Appl. Phys. Lett. 96 051120
[35] Kumar S, Chan C W I, Hu Q and Reno J L 2010 Nat. Phys. 7 166
[36] Williams B S, Kumar S, Hu Q and Reno J L 2006 Electron. Lett. 42 89
[37] Brandstetter M, Deutsch C, Krall M, Detz H, MacFarland D C, Zederbauer T, Andrews A M, Schrenk W, Strasser G and Unterrainer K 2013 Appl. Phys. Lett. 103 171113
[38] Li L H, Zhu J X, Chen L, Davies A G and Linfield E H 2015 Opt. Express 23 2720
[39] Ajili L, Scalari G and Faist J 2005 Appl. Phys. Lett. 87 141107
[40] Fischer M, Scalari G, Walther C and Faist J 2009 J. Cryst. Growth 311 1939
[41] Deutsch C, Krall M, Brandstetter M, Detz H, Andrews A M, Klang P, Schrenk W, Strasser G and Unterrainer K 2012 Appl. Phys. Lett. 101 211117
[42] Deutsch C, Kainz M A, Krall M, Brandstetter M, Bachmann D, Schönhuber S, Detz H Zederbauer T, MacFarland D, Andrews A M, Schrenk W, Beck M Ohtani K Faist J Strasser G and Unterrainer K 2017 ACS Photonics 4 957
[43] Vukmirovića N, Jovanović V D, Indjin D, Ikonić Z and Harrison P 2005 J. Appl. Phys. 97 103106
[44] Bellotti E, Driscoll K, Moustakas T D and Paiella R 2008 Appl. Phys. Lett. 92 101112
[45] Terashima W and Hirayama H 2015 Proc. SPIE 9483 948304
[46] Popadic M, Milanovic V and Indjin D 2006 J. Appl. Phys. 100 073709
[47] Bellotti E, Driscoll K, Moustakas T D and Paiella R 2009 J. Appl. Phys. 105 113103
[48] Lynch S A, Bates R and Paul D J 2002 Appl. Phys. Lett. 81 1543
[49] Lever L, Valavanis A, Ikonić Z and Kelsall R W 2008 Appl. Phys. Lett. 92 021124
[50] Borak A 2005 Science 308 638
[51] Luo H, Laframboise S R, Wasilewski Z R, Aers G C, Liu H C and Cao J C 2007 Appl. Phys. Lett. 90 041112
[52] Kumar S, Williams B S, Qin Q, Lee A W M, Hu Q and Reno J L 2007 Opt. Express 15 113
[53] Williams B S, Kumar S, Hu Q and Reno J L 2005 Opt. Express 13 3331
[54] Fasching G, Benz A, Unterrainer K R 2005 Appl. Phys. Lett. 87 211112
[55] Cao J C 2012 Sci. China Inform. Sci. 55 16
[56] Cao J C, Li H, Han Y J, Tan Z Y, Lü J T, Luo H, Laframboise S and Liu H C 2008 Chin. Phys. Lett. 25 953
[57] Zhang H, Dunbar L A, Scalari G, Houdré R and Faist J 2007 Opt. Express 15 16818
[58] Benz A, Fasching G, Deutsch C, Andrews A M, Unterrainer K, Klang P, Schrenk W and Strasser G 2007 Opt. Express 15 12418
[59] Amanti M I, Scalari G, Castellano F, Beck M and Faist J 2010 Opt. Express 18 6390
[60] Mahler L, Tredicucci A, Beltram F, Walther C, Faist J, Beere H E and Ritchie D A 2010 Appl. Phys. Lett. 96 191109
[61] Yu N, Wang Q, Kats M A, Fan J A, Khanna S P, Li L H, Davies A G, Linfield E H and Capasso F 2010 Nat. Mater. 9 730
[62] Xu G, Colombelli R, Khanna S P, Belarouci A, Letartre X, Li L H, Linfield E H, Davies A G, Beere H E and Ritchie D A 2012 Nat. Commun. 3 952
[63] Xu G, Li L, Isac N, Halioua Y, Davies A G, Linfield E H and Colombelli R 2014 Appl. Phys. Lett. 104 091112
[64] Jin Y, Gao L, Chen J, Wu C Z, Reno J L and Kumar S 2018 Nat. Commun. 9 1407
[65] Amanti M I, Fischer M, Scalari G, Beck M and Faist J 2009 Nat. Photon. 3 586
[66] Wu C, Khanal S, Reno J L and Kumar S 2016 Optica 3 734
[67] Biasco S, Garrasi K, Castellano F, Li L H, Beere H E, Ritchie D A, Linfield E H, Davies A G and Vitiello M S 2018 Nat. Commun. 9 1122
[68] Mujagić E, Deutsch C, Detz H, Klang P, Nobile M, Andrews A M, Schrenk W, Unterrainer K and Strasser G 2009 Appl. Phys. Lett. 95 011120
[69] Chassagneux Y, Colombelli R, Maineult W, Barbieri S, Beere H E, Ritchie D A, Khanna S P, Linfield E H and Davies A G 2009 Nature 457 174
[70] Sevin G, Fowler D, Xu G, Julien F H, Colombelli R, Khanna S P, Linfield E H and Davies A G 2010 Appl. Phys. Lett. 97 131101
[71] Liang G, Liang H, Zhang Y, Li L H, Davies A G, Linfield E H, Yu S F, Liu H C and Wang Q J 2013 Opt. Express 21 31872
[72] Vitiello M S, Nobile M, Ronzani A, Tredicucci A, Castellano F, Talora V, Li L H, Linfield E H and Davies A G 2014 Nat. Commun. 5 5884
[73] Biasco S, Beere H E, Ritchie D A, Li L H, Davies A G, Linfield E H and Vitiello M S 2019 Light-Sci. Appl. 8 43
[74] Xu L, Curwen C A, Hon P W C, Chen Q S, Itoh T and Williams B S 2015 Appl. Phys. Lett. 107 221105
[75] Curwen C A, Reno J L and Williams B S 2018 Appl. Phys. Lett. 113 011104
[76] Xu L, Chen D, Curwen C A, Memarian M, Reno J L, Itoh T and Williams B S 2017 Optica 4 468
[77] Curwen C A, Reno J L and Williams B S 2019 Nat. Photon. 13 855
[78] Schneider H and Liu H C 2006 Quantum well infrared photodetectors:Physics and applications, (Berlin:Springer), pp. 45——80
[79] Guo X G, Tan Z Y, Cao J C and Liu H C 2009 Appl. Phys. Lett. 94 201101
[80] Tan Z Y, Guo X G, Cao J C, Li H, Wang X, Feng S L, Wasilewski Z R and Liu H C 2009 Semicond. Sci. Technol. 24 115014
[81] Guo X G, Cao J C, Zhang R, Tan Z Y and Liu H C 2013 IEEE J. Sel. Top. Quant. 19 8500508
[82] Jia J Y, Wang T M, Zhang Y H, Shen W Z and Schneider H 2015 IEEE Trans. Terahertz Sci. Technol. 5 715
[83] Luo H, Liu H C, Song C and Wasilewski Z R 2005 Appl. Phys. Lett. 86 231103
[84] Franke C, Walther M, Helm M, Schneider H 2015 Infrared Phys. Technol. 70 30
[85] Zhang R, Shao D X, Fu Z L, Wang H X, Zhou T, Tan Z Y and Cao J C 2017 IEEE J. Sel. Top. Quant. 23 3800407
[86] Grant P D, Laframboise S R, Dudek R, Graf M, Bezinger A and Liu H C 2009 Electron. Lett. 45 952
[87] Fathololoumi S, Dupont E, Ban D, Graf M, Laframboise S R, Wasilewski Z R and Liu H C 2010 IEEE J. Quantum Electron. 46 396
[88] Tan Z Y, Zhou T, Cao J C and Liu H C 2013 IEEE Photon. Technol. Lett. 25 1344
[89] Gu L, Tan Z Y, Wu Q Z, Wang C and Cao J C 2015 Chin. Opt. Lett. 13 081402
[90] Gu L L, Zhang R, Tan Z Y, Wan W J, Yin R, Guo X G and Cao J C 2014 J. Phys. D:Appl. Phys. 47 165101
[91] Zhang R, Fu Z L, Gu L L, Guo X G and Cao J C 2014 Appl. Phys. Lett. 105 231123
[92] Palaferri D, Todorov Y, Chen Y N, Madeo J, Vasanelli A, Li L H, Davies A G, Linfield E H and Sirtori C 2014 Appl. Phys. Lett. 106 161102
[93] Wang H X, Zhang R, Wang F, Jiao Z J, Shao D X, Fu Z L, Zhou T, Tan Z Y and Cao J C 2017 Electron. Lett. 53 1129
[94] Wang H X, Fu Z L, Shao D X, Zhang Z Z, Wang C, Tan Z Y, Guo X G and Cao J C 2018 Appl. Phys. Lett. 113 171107
[95] Zheng Y, Chen P, Yang H, Ding J, Zhou Y, Tang Z, Zhou X, Li Z, Li N, Chen X and Lu W 2019 Appl. Phys. Lett. 114 091105
[96] Yang H, Zheng Y, Li N, Wang J and Chen P 2020 J. Appl. Phys. 127 053104
[97] Tan Z Y, Guo X G, Cao J C Li H and Han Y J 2010 Acta Physic. Sin. 59 2391(in Chinese)
[98] Tan Z Y, Cao J C, Han Y J and Chen Z (U. S. Pantent) 8749225 B2[20140610]
[99] Tan Z Y, Cao J C, Gu L and Zhu Y H (U. S. Pantent) 10119860 B2[2018-11-06]
[100] Chen Z, Tan Z Y, Han Y J, Zhang R, Guo X G, Li H, Cao J C and Liu H C 2011 Electron. Lett. 47 1002
[101] Chen Z, Gu L, Tan Z Y, Wang C and Cao J C 2013 Chin. Opt. Lett. 11 112001
[102] Tan Z Y, Li H, Wan W J, Fu Z L, Wang C and Cao J C 2017 Electron. Lett. 53 91
[103] Wan W J, Li H, Zhou T and Cao J C 2017 Sci. Rep. 7 44109
[104] Li Z P, Wan W J, Zhou K, Liao X Y, Yang S J, Fu Z L, Cao J C and Hua Li H 2019 Phys. Rev. Appl. 12 044068
[105] Li H, Li Z P, Wan W J, Zhou K, Liao X Y, Yang S J, Wang C J, Cao J C and Zeng H P 2020 ACS Photonics 7 49
[106] Chan W L, Diebel J and Mittleman D M 2007 Rep. Prog. Phys. 70 1325
[107] Hu B B and Nuss M C 1995 Opt. Lett. 20 1716
[108] Darmo J, Tamosiunas V, Fasching G, Kröll J, Unterrainer K, Beck M, Giovannini M, Faist J, Kremser C and Debbage P 2004 Opt. Express 12 1879
[109] Kim S M, Hatami F and Harris J S 2006 Appl. Phys. Lett. 88 153903
[110] Li Q, Hu J Q and Yang Y F 2014 Opt. Precision Eng. 22 2188(in Chinese)
[111] Rothbart N, Richter H, Wienold M, Lutz Schrottke L, Grahn H T and Hübers H W 2013 IEEE Trans. THz Sci. Technol. 3 617
[112] Lee A W M and Hu Q 2005 Opt. Lett. 30 2563
[113] Lee A W M, Williams B S, Kumar S, Hu Q and Reno J L 2006 IEEE Photon. Technol. Lett. 18 1415
[114] Oda N, Yoneyama H and Sasaki T 2008 Proc. SPIE 6940 69402Y
[115] Oda N, Ishi T, Morimoto T, Sudou T, Tabata H, Kawabe S, Fukuda K, Lee A W M and Hu Q 2012 Proc. SPIE 8496 84960Q
[116] Lee A W M, Qin Q, Kumar S, Williams B S and Hu Q 2006 Appl. Phys. Lett. 89 141125
[117] Tan Z Y, Gu L, Xu T H, Zhou T and Cao J C 2014 Chin. Opt. Lett. 12 070401
[118] Yang M W, Ji H B, Tan Z Y, Zhang H F, Wang Q, Peng N S, Gu J Q, Zhu Y M and Cao J C 2016 Acta Optic. Sin. 36 0611004(in Chinese)
[119] Zhou T, Zhang R, Guo X G, Tan Z Y, Chen Z, Cao J C and Liu H C 2012 IEEE Photon. Technol. Lett. 24 1109
[120] Tan Z Y, Zhou T, Fu Z L and Cao J C 2014 Electron. Lett. 50 389
[121] Qiu F C, Tan Z Y, Fu Z L, Wan W J, Li M Q, Wang C and Cao J C 2018 Opt. Commun. 427 170
[122] Schneider H and Liu H C 2006 Quantum well infrared photodetectors:Physics and applications, (Berlin:Springer), pp. 161-164
[123] Fu Z L, Gu L L, Guo X G, Tan Z Y, Wan W J, Zhou T, Shao D X, Zhang R and Cao J 2016 Sci. Rep. 6 25383
[124] Degl'Innocenti R, Wallis R, Wei B, Xiao L, Kindness S J, Mitrofanov O, Braeuninger-Weimer P, Hofmann S, Beere H E and Ritchie D A 2017 ACS Photonics 4 2150
[1] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[2] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[3] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[4] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[5] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[6] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[7] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[8] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[9] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[10] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
[11] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[12] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[13] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
[14] Single-shot measurement of THz pulses
Lei Yang(杨磊), Lei Hou(侯磊), Chengang Dong(董陈岗), Wei Shi(施卫). Chin. Phys. B, 2020, 29(5): 057803.
[15] Hydrodynamic simulation of chaotic dynamics in InGaAs oscillator in terahertz region
Wei Feng(冯伟). Chin. Phys. B, 2020, 29(4): 047302.
No Suggested Reading articles found!