Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067103    DOI: 10.1088/1674-1056/26/6/067103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles investigation of the effects of strain on elastic, thermal, and optical properties of CuGaTe2

Li Xue(薛丽), Yi-Ming Ren(任一鸣), Jun-Rong He(何俊荣), Si-Liu Xu(徐四六)
School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China
Abstract  Based on the density functional theory, the influences of strain on structural, elastic, thermal and optical properties of CuGaTe2 are discussed in detail. It is found that the tensile strain on CuGaTe2 is beneficial to the decrease of lattice thermal conductivity by reducing the mean sound velocity and Debye temperature. Moreover, all strained and unstrained CuGaTe2 exhibit rather similar optical characters. But the tensile strain improves the ability to absorb sunlight in the visible range. These research findings can give hints for designing thermoelectric and photovoltaic devices.
Keywords:  elastic constants      thermal properties      optical properties      first-principles  
Received:  19 January 2017      Revised:  16 March 2017      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11304105).
Corresponding Authors:  Li Xue     E-mail:  xueli0610@163.com

Cite this article: 

Li Xue(薛丽), Yi-Ming Ren(任一鸣), Jun-Rong He(何俊荣), Si-Liu Xu(徐四六) First-principles investigation of the effects of strain on elastic, thermal, and optical properties of CuGaTe2 2017 Chin. Phys. B 26 067103

[1] Shay J L and Wernick J H 1975 Ternary chalcopyrite semiconductor growth: Electronic properties and applications (New York: Pergamon Press) p. 244
[2] Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H and Yamanaka S 2012 Adv. Mater. 24 3622
[3] Zou D F, Xie S H, Liu Y Y, Lin J G and Li J Y 2013 J. Alloys Compd. 570 150
[4] Shen J, Chen Z, Zheng L, Li W and Pei Y 2016 J. Mater. Chem. C 4 209
[5] Rai D P, Shankar A, Sakhya A P, Sinha T P, Grima-Gallardo P, Cabrera H and Thapa R K 2017 J. Alloys Compd. 699 1003
[6] Yin W J, Wu Y, Noufi R, Al-Jassim M and Yan Y 2013 Appl. Phys. Lett. 102 193905
[7] Zhang X Z, Shen K S, Jiao Z Y and Huang X F 2013 Comput. Theor. Chem. 1010 67
[8] Sharma S, Verma A S, Bhandari R and Jindal V K 2014 Comput. Mater. Sci. 86 108
[9] Wu W, Li Y, Du Z, Meng Q, Sun Z, Ren W and Cui J 2013 Appl. Phys. Lett. 103 011905
[10] Wang J F, Fu X N, Zhang X D, Wang J T, Li X D and Jiang Z Y 2016 Chin. Phys. B 25 086302
[11] Stashans A and Rivera K 2016 Chin. Phys. Lett. 33 097102
[12] Huang C B, Wu H X, Ni Y B, Wang Z Y, Qi M and Zhang C L 2016 Chin. Phys. B 25 086201
[13] Luo M H, Li M K, Zhu J K, Huang Z B, Yang H, He Y B 2016 Acta Phys. Sin. 65 157303 (in Chinese)
[14] Hinsche N F, Yu Yavorsky B, Mertig I and Zahn P 2011 Phys. Rev. B 84 165214
[15] Hinsche N F, Mertig I and Zahn P 2011 J. Phys.: Condens. Matter 23 295502
[16] Xue L, Xu B, Zhao D and Yi L 2014 Comput. Mater. Sci. 90 143
[17] Xue L, Xu B and Yi L 2014 Chin. Phys. B 23 037103
[18] Bodnar I V and Orlova N S 1986 Cryst. Res. Technol. 21 1091
[19] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Xue L, Xu B, Zhao D G and Yi L 2014 Intermetallics 55 204
[22] Tao X, Jund P, Colinet C and Tedenac J C 2009 Phys. Rev. B 80 104103
[23] Qiao Y, Zhang H, Hong C and Zhang X 2009 J. Phys. D: Appl. Phys. 42 105413
[24] Chattaraj D, Majumder C and Dash S 2014 J. Alloys Compd. 615 234
[25] Xue L and Ren Y M 2016 Acta Phys. Sin. 65 156301 (in Chinese)
[26] Hill R 1952 Proc. Phys. Soc. London A 65 349
[27] Pugh S F 1954 Philos. Mag. 45 823
[28] Grimvall G 1999 Thermophysical properties of materials (Amsterdam: Elsevier, North Holland)
[29] Sharma S, Verma A S, Bhandari R, Kumari S and Jindal V K 2014 Mater. Sci. Semicond. Proc. 26 187
[30] Zhu T J, Fu C G, Xie H H, Liu Y T, Feng B, Xie J and Zhao X B 2013 Europhys. Lett. 104 46003
[31] Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. B 46 6131
[32] Jaffe J E and Zunger A 1984 Phys. Rev. B 29 1882
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[14] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[15] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
No Suggested Reading articles found!