Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067103    DOI: 10.1088/1674-1056/26/6/067103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles investigation of the effects of strain on elastic, thermal, and optical properties of CuGaTe2

Li Xue(薛丽), Yi-Ming Ren(任一鸣), Jun-Rong He(何俊荣), Si-Liu Xu(徐四六)
School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China
Abstract  Based on the density functional theory, the influences of strain on structural, elastic, thermal and optical properties of CuGaTe2 are discussed in detail. It is found that the tensile strain on CuGaTe2 is beneficial to the decrease of lattice thermal conductivity by reducing the mean sound velocity and Debye temperature. Moreover, all strained and unstrained CuGaTe2 exhibit rather similar optical characters. But the tensile strain improves the ability to absorb sunlight in the visible range. These research findings can give hints for designing thermoelectric and photovoltaic devices.
Keywords:  elastic constants      thermal properties      optical properties      first-principles     
Received:  19 January 2017      Published:  05 June 2017
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11304105).
Corresponding Authors:  Li Xue     E-mail:  xueli0610@163.com

Cite this article: 

Li Xue(薛丽), Yi-Ming Ren(任一鸣), Jun-Rong He(何俊荣), Si-Liu Xu(徐四六) First-principles investigation of the effects of strain on elastic, thermal, and optical properties of CuGaTe2 2017 Chin. Phys. B 26 067103

[1] Shay J L and Wernick J H 1975 Ternary chalcopyrite semiconductor growth: Electronic properties and applications (New York: Pergamon Press) p. 244
[2] Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y, Muta H and Yamanaka S 2012 Adv. Mater. 24 3622
[3] Zou D F, Xie S H, Liu Y Y, Lin J G and Li J Y 2013 J. Alloys Compd. 570 150
[4] Shen J, Chen Z, Zheng L, Li W and Pei Y 2016 J. Mater. Chem. C 4 209
[5] Rai D P, Shankar A, Sakhya A P, Sinha T P, Grima-Gallardo P, Cabrera H and Thapa R K 2017 J. Alloys Compd. 699 1003
[6] Yin W J, Wu Y, Noufi R, Al-Jassim M and Yan Y 2013 Appl. Phys. Lett. 102 193905
[7] Zhang X Z, Shen K S, Jiao Z Y and Huang X F 2013 Comput. Theor. Chem. 1010 67
[8] Sharma S, Verma A S, Bhandari R and Jindal V K 2014 Comput. Mater. Sci. 86 108
[9] Wu W, Li Y, Du Z, Meng Q, Sun Z, Ren W and Cui J 2013 Appl. Phys. Lett. 103 011905
[10] Wang J F, Fu X N, Zhang X D, Wang J T, Li X D and Jiang Z Y 2016 Chin. Phys. B 25 086302
[11] Stashans A and Rivera K 2016 Chin. Phys. Lett. 33 097102
[12] Huang C B, Wu H X, Ni Y B, Wang Z Y, Qi M and Zhang C L 2016 Chin. Phys. B 25 086201
[13] Luo M H, Li M K, Zhu J K, Huang Z B, Yang H, He Y B 2016 Acta Phys. Sin. 65 157303 (in Chinese)
[14] Hinsche N F, Yu Yavorsky B, Mertig I and Zahn P 2011 Phys. Rev. B 84 165214
[15] Hinsche N F, Mertig I and Zahn P 2011 J. Phys.: Condens. Matter 23 295502
[16] Xue L, Xu B, Zhao D and Yi L 2014 Comput. Mater. Sci. 90 143
[17] Xue L, Xu B and Yi L 2014 Chin. Phys. B 23 037103
[18] Bodnar I V and Orlova N S 1986 Cryst. Res. Technol. 21 1091
[19] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Xue L, Xu B, Zhao D G and Yi L 2014 Intermetallics 55 204
[22] Tao X, Jund P, Colinet C and Tedenac J C 2009 Phys. Rev. B 80 104103
[23] Qiao Y, Zhang H, Hong C and Zhang X 2009 J. Phys. D: Appl. Phys. 42 105413
[24] Chattaraj D, Majumder C and Dash S 2014 J. Alloys Compd. 615 234
[25] Xue L and Ren Y M 2016 Acta Phys. Sin. 65 156301 (in Chinese)
[26] Hill R 1952 Proc. Phys. Soc. London A 65 349
[27] Pugh S F 1954 Philos. Mag. 45 823
[28] Grimvall G 1999 Thermophysical properties of materials (Amsterdam: Elsevier, North Holland)
[29] Sharma S, Verma A S, Bhandari R, Kumari S and Jindal V K 2014 Mater. Sci. Semicond. Proc. 26 187
[30] Zhu T J, Fu C G, Xie H H, Liu Y T, Feng B, Xie J and Zhao X B 2013 Europhys. Lett. 104 46003
[31] Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. B 46 6131
[32] Jaffe J E and Zunger A 1984 Phys. Rev. B 29 1882
[1] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[2] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[3] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[4] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[5] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[6] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[7] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[8] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[9] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[10] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[11] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[12] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[13] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[14] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[15] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
No Suggested Reading articles found!