Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 108701    DOI: 10.1088/1674-1056/23/10/108701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Initial conformation of kinesin’s neck linker

Geng Yi-Zhao (耿轶钊)a, Ji Qing (纪青)b, Liu Shu-Xia (刘书霞)b, Yan Shi-Wei (晏世伟)a c
a College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
b Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China;
c Beijing Radiation Center, Beijing 100875, China
Abstract  How ATP binding initiates the docking process of kinesin's neck linker is a key question in understanding kinesin mechanisms. By exploiting a molecular dynamics method, we investigate the initial conformation of kinesin's neck linker in its docking process. We find that, in the initial conformation, the neck linker has interactions with β0 and forms a 'cover-neck bundle' structure with β0. From this initial structure, the formation of extra turns and the docking of the cover-neck bundle structure can be achieved. The motor head provides a forward force on the initial cover-neck bundle structure through ATP-induced rotation. This force, together with the hydrophobic interaction of ILE327 with the hydrophobic pocket on the motor head, drives the formation of the extra turn and initiates the neck linker docking process. Based on these findings, a pathway from ATP binding-induced motor head rotation to neck linker docking is proposed.
Keywords:  kinesin      neck linker      molecular dynamics simulation  
Received:  12 April 2014      Revised:  20 May 2014      Accepted manuscript online: 
PACS:  87.16.Nn (Motor proteins (myosin, kinesin dynein))  
  87.10.Tf (Molecular dynamics simulation)  
  87.15.hp (Conformational changes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10975044 and 10975019), the Foundation of the Ministry of Personnel of China for Returned Scholars (Grant No. MOP2006138), the Fundamental Research Funds for the Central University, and the Key Subject Construction Project of Hebei Provincial Universities.
Corresponding Authors:  Ji Qing     E-mail:  jiqingch@hebut.edu.cn;yansw@bnu.edu.cn
About author:  87.16.Nn; 87.10.Tf; 87.15.hp

Cite this article: 

Geng Yi-Zhao (耿轶钊), Ji Qing (纪青), Liu Shu-Xia (刘书霞), Yan Shi-Wei (晏世伟) Initial conformation of kinesin’s neck linker 2014 Chin. Phys. B 23 108701

[36]Rosenfeld S S, Xing J, Jefferson G M, Cheung H C and King P H 2002 J. Biol. Chem. 277 36731
[37]Rosenfeld S S, Fordyce P M, Jefferson G M, King P H and Block S M 2003 J. Biol. Chem. 278 18550
[38]Uemura S and Ishiwata S 2003 Nat. Struct. Mol. Biol. 10 308
[39]Skiniotis G, Cochran J C, Müller J, Mandelkow E, Gilbert S P and Hoenger A 2004 EMBO J. 23 989
[40]Kikkawa M and Hirokawa N 2006 EMBO J. 25 4187
[41]Parke C L, Wojcik E J, Kim S and Worthylake D K 2010 J. Biol. Chem. 285 5859
[1]Courant R 1962 Methods of Mathematical Physics, Vol. 2 (New York: Interscience) pp. 183-187
[2]Huang S X and Wu R S 2009 Mathematical Physics Problems in Atmospheric Science, 3nd edn. (Beijing: Chinese Meteorological Press) pp. 413-414 (in Chinese)
[3]Tosaka N, Onishi K and Yamamato M 1999 Mathematical Approach and Solution Methods for Inverse Problems: Inverse Analysis of Partial Differential Equations (Tokyo: University of Tokyo Press) pp. 117-168
[4]Kirsch A 1996 An Introduction to the Mathematic Theory of Inverse Problems (New York: Springer-Verlag) pp. 9-14
[42]Parker D, Bryant Z and Delp S L 2009 Cell Mol. Bioeng. 2 366
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[15] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
No Suggested Reading articles found!