Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064213    DOI: 10.1088/1674-1056/23/6/064213
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Rectification effect in asymmetric Kerr nonlinear medium

Liu Wan-Guo, Pan Feng-Ming, Cai Li-Wei
Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
Abstract  Based on the transfer matrix method, the recursion of an electromagnetic wave propagating in an asymmetric Kerr nonlinear medium is analytically formulated, from which the rectification effect is clearly presented. The effects on the rectification region of the linear part and nonlinear coefficient of permittivity are both studied, and the energy densities before and after rectification are discussed. We use a rectifying factor to describe the intensity of the rectification effect. The result shows that every transmission peak is divided into two parts when the symmetry is broken, and nonlinear asymmetry has a more significant effect on the rectification effect than the linear asymmetry. The rectification intensity and area will be enlarged when the asymmetry factor is increased in a certain range.
Keywords:  rectification      transfer matrix method      Kerr nonlinearity      asymmetry  
Received:  24 September 2014      Revised:  14 November 2013      Published:  15 June 2014
PACS:  42.70.Mp (Nonlinear optical crystals)  
  42.79.-e (Optical elements, devices, and systems)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51032002) and the National High Technology Research and Development Program of China (Grant No. 2011AA050526).
Corresponding Authors:  Pan Feng-Ming     E-mail:  fmpan@nuaa.edu.cn

Cite this article: 

Liu Wan-Guo, Pan Feng-Ming, Cai Li-Wei Rectification effect in asymmetric Kerr nonlinear medium 2014 Chin. Phys. B 23 064213

[1] Whitham G B 1974 Linear and Nonlinear Waves (New York: Wiley)
[2] Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia: SIAM).
[3] Zhang Q Y and Tian Q 2002 Chin. Phys. 11 809
[4] Tian Q and Wang J P 2002 Int. J. Theor. Phys. 41 1275
[5] Liu N H and Fu J W 2003 Acta Phys. Sin. 52 1418 (in Chinese)
[6] Liu B C, Pan X Q and Ren Z M 2006 Acta Phys. Sin. 55 6595 (in Chinese)
[7] Li S M, Wang Q, Wu Z and Wei Q 2001 Acta Phys. Sin. 50 489 (in Chinese)
[8] Xiong H, Si L G, Ding C L, Yang X X and Wu Y 2012 Phys. Rev. E 85 016606
[9] Petrov E Y and Kudrin A V 2010 Phys. Rev. Lett. 104 190404
[10] Suchowski H, Oron D, Arie A and Silberberg Y 2008 Phys. Rev. A 78 063821
[11] Fu L, Ma G and Yan E C Y 2010 J. Am. Chem. Soc. 132 5405
[12] Ji N, Ostroverkhov V, Tian C S and Shen Y R 2008 Phys. Rev. Lett. 100 096102
[13] He S and Maynard J D 1986 Phys. Rev. Lett. 57 3171
[14] Bayer G and Niederdränk T 1993 Phys. Rev. Lett. 70 3884
[15] Hou Z L and Fu X J 2004 Phys. Rev. B 70 014304
[16] Cao Y J and Yang X 2008 Acta Phys. Sin. 57 3620 (in Chinese)
[17] Cao Y J, Yang X and Jiang Z L 2009 Acta Phys. Sin. 58 7735 (in Chinese)
[18] Zhukovsky S V and Smirnov A G 2011 Phys. Rev. A 83 023818
[19] Konotop V V and Kuzmiak V 2002 Phys. Rev. B 66 235208
[20] Liang B, Yuan B and Cheng J C 2009 Phys. Rev. Lett. 103 104301
[21] Siddiki A, Horas J, Kupidura D, Wegscheider W and Ludwig S 2010 New J. Phys. 12 113011
[22] Eilbeck J, Lomdahl P and Scott A 1985 Physica 16D 318
[23] Kevrekidis P G 2009 The Discrete Nonlinear Schrödinger Equation (Berlin: Springer Verlag).
[24] Kosevich A M and Mamalui M A 2002 J. Exp. Theor. Phys. 95 777
[25] Wang H and Li Y P 2001 Acta Phys. Sin. 50 2172 (in Chinese)
[1] Solid angle car following model
Dongfang Ma(马东方), Yueyi Han(韩月一), Sheng Jin(金盛). Chin. Phys. B, 2020, 29(6): 060504.
[2] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[3] Impact vibration properties of locally resonant fluid-conveying pipes
Bing Hu(胡兵), Fu-Lei Zhu(朱付磊), Dian-Long Yu(郁殿龙), Jiang-Wei Liu(刘江伟), Zhen-Fang Zhang(张振方), Jie Zhong(钟杰), and Ji-Hong Wen(温激鸿). Chin. Phys. B, 2020, 29(12): 124301.
[4] A phononic rectifier based on carbon schwarzite host-guest system
Zhongwei Zhang(张忠卫), Yulou Ouyang(欧阳宇楼), Jie Chen(陈杰), and Sebastian Volz. Chin. Phys. B, 2020, 29(12): 124402.
[5] Ratchet transport of overdamped particles in superimposed driven lattices
Shu-Na Huang(黄淑娜), Wei-Jing Zhu(朱薇静), Xiao-Qun Huang(黄小群), Bao-Quan Ai(艾保全), Feng-Guo Li(李丰果). Chin. Phys. B, 2019, 28(4): 040502.
[6] Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect
Bakhtawar, Muhammad Haneef, B A Bacha, H Khan, M Atif. Chin. Phys. B, 2018, 27(11): 114215.
[7] Enhanced Kerr nonlinearity in a quantized four-level graphene nanostructure
Ghahraman Solookinejad, M Panahi, E Ahmadi, Seyyed Hossein Asadpour. Chin. Phys. B, 2016, 25(7): 074204.
[8] Two-color light-emitting diodes with polarization-sensitive high extraction efficiency based on graphene
H Sattarian, S Shojaei, E Darabi. Chin. Phys. B, 2016, 25(5): 058504.
[9] Length dependence of rectification in organic co-oligomer spin rectifiers
Gui-Chao Hu(胡贵超), Zhao Zhang(张朝), Ying Li(李营), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2016, 25(5): 057308.
[10] Theoretical studies on particle shape classification based on simultaneous small forward angle light scattering and aerodynamic sizing
Jin-Bi Zhang(张金碧), Lei Ding(丁蕾), Ying-Ping Wang(王颖萍), Li Zhang(张莉), Jin-Lei Wu(吴金雷), Hai-Yang Zheng(郑海洋), Li Fang(方黎). Chin. Phys. B, 2016, 25(3): 034201.
[11] Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement
Jino Heo, Chang-Ho Hong, Dong-Hoon Lee, Hyung-Jin Yang. Chin. Phys. B, 2016, 25(2): 020306.
[12] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[13] One-dimensional hybrid simulation of the electrical asymmetry effectcaused by the fourth-order harmonic in dual-frequencycapacitively coupled plasma
Shuai Wang(王帅), Hai-Feng Long(龙海凤), Zhen-Hua Bi(毕振华), Wei Jiang(姜巍), Xiang Xu(徐翔), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(11): 115202.
[14] Polaron effect on the optical rectification in spherical quantum dots with electric field
Zhen-Yu Feng(冯振宇), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2016, 25(10): 107804.
[15] Asymmetric and symmetric meta-correlations in financial markets
Xiaohui Li(李晓辉), Xiangying Shen(沈翔瀛), Jiping Huang(黄吉平). Chin. Phys. B, 2016, 25(10): 108903.
No Suggested Reading articles found!