Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 088104    DOI: 10.1088/1674-1056/22/8/088104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Electrical properties of MOCVD-grown GaN on Si (111) substrates with low-temperature AlN interlayers

Ni Yi-Qiang, He Zhi-Yuan, Zhong Jian, Yao Yao, Yang Fan, Xiang Peng, Zhang Bai-Jun, Liu Yang
School of Physics and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  The electrical properties of the structure of GaN grown on an Si (111) substrate with low-temperature (LT) AlN interlayers by metal-organic chemical-vapour deposition are investigated. An abnormal P-type conduction is observed in our GaN-on-Si structure by Hall effect measurement, which is mainly due to the Al atom diffusing into the Si substrate and acting as an acceptor dopant. Meanwhile, a constant n-type conduction channel is observed in LT-AlN, which causes a conduction-type conversion at low temperature (50 K) and may further influence the electrical behavior of this structure.
Keywords:  metal-organic chemical-vapour deposition      GaN-on-Si      electrical behavior      low-temperature AlN interlayers  
Received:  22 December 2012      Revised:  04 February 2013      Published:  27 June 2013
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  78.55.Cr (III-V semiconductors)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923200), the National "863" Project of China (Grant No. 2011AA03A101), the Foundation of the Key Technologies R & D Program of Guangdong Province, China (Grant No. 2007A010500011), the International Science and Technology Cooperation Program of China (Grant No. 2012DFG52260), and the National Science Foundation of China-Guangdong Province Jointed Foundation (Grant No. U0834001).
Corresponding Authors:  Liu Yang     E-mail:  liuy69@mail.sysu.edu.cn

Cite this article: 

Ni Yi-Qiang, He Zhi-Yuan, Zhong Jian, Yao Yao, Yang Fan, Xiang Peng, Zhang Bai-Jun, Liu Yang Electrical properties of MOCVD-grown GaN on Si (111) substrates with low-temperature AlN interlayers 2013 Chin. Phys. B 22 088104

[1] Saito W, Omura I, Ogura T and Ohashi H 2004 Solid State Electron. 48 1555
[2] Wen Y, He Z, Li J, Luo R, Xiang P, Deng Q, Xu G, Shen Z, Wu Z, Zhang B, Jiang H, Wang G and Liu Y 2011 Appl. Phys. Lett. 98 72103
[3] Hongbo Y, Kemal Ozturk M, Ozcelik S and Ozbay E 2006 J. Crystal Growth 293 273
[4] Seifert W, Franzheld R, Butter E, Sobotta H and Riede V 1983 Crystal Res. Technol. 18 383
[5] Wetzel C, Suski T, Ager Iii J W, Weber E R, Haller E E, Fischer S, Meyer B K, Molnar R J and Perlin P 1997 Phys. Rev. Lett. 78 3923
[6] Heikman S, Keller S, Denbaars S P and Mishra U K 2002 Appl. Phys. Lett. 81 439
[7] Wang Y, Yu N, Deng D, Li M, Sun F and Lau K 2010 Sci. China: Phys. Mech. & Astron. 53 1578
[8] Webb J B, Tang H, Rolfe S and Bardwell J A 1999 Appl. Phys. Lett. 75 953
[9] Polyakov A Y, Smirnov N B, Govorkov A V and Pearton S J 2004 J. Vac. Sci. & Technol. B: Microelectronics and Nanometer Structures 22 120
[10] Bougrioua Z, Azize M, Lorenzini P, Laügt M and Haas H 2005 Physica Status Solidi (a) 202 536
[11] Bougrioua Z, Moerman I, Nistor L, Van Daele B, Monroy E, Palacios T, Calle F and Leroux M 2003 Physica Status Solidi (a) 195 93
[12] Wen Y, He Z, Li J, Luo R, Xiang P, Deng Q, Xu G, Shen Z, Wu Z, Zhang B, Jiang H, Wang G and Liu Y 2011 Appl. Phys. Lett. 98 72103
[13] He Z, Li J, Wen Y, Shen Z, Yao Y, Yang F, Ni Y Q, Wu Z, Zhang B and Liu Y 2012 Jpn. J. Appl. Phys. 51 54103
[14] Gang X, Xu E, Hashemi N, Bo Z, Fu F Y and Ng W T 2012 Chin. Phys. B 21 086105
[15] Liu Z Y, Zhang J C and Duan H T 2011 Chin. Phys. B 20 097701
[16] Acar S, Lisesivdin S B, Kasap M, Elik S O Z C C and Zbay E O 2008 Thin Solid Films 516 2041
[17] Fan Z Y, Li J, Nakarmi M L, Lin J Y and Jiang H X 2006 Appl. Phys. Lett. 88 73513
[18] Hu X, Deng J, Pala N, Gaska R, Shur M S, Chen C Q, Yang J, Simin G, Khan M A, Rojo J C and Others 2003 Appl. Phys. Lett. 82 1299
[19] Milnes A G 1973 Deep Impurities in Semiconductors (New York: Wiley)
[1] A MOVPE method for improving InGaN growth quality by pre-introducing TMIn
Zi-Kun Cao(曹子坤), De-Gang Zhao(赵德刚), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Feng Liang(梁锋), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2021, 30(1): 018103.
[2] Mg acceptor activation mechanism and hole transport characteristics in highly Mg-doped AlGaN alloys
Qing-Jun Xu(徐庆君), Shi-Ying Zhang(张士英), Bin Liu(刘斌), Zhen-Hua Li(李振华), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Ke Wang(王科), Rong Zhang(张荣), You-Liao Zheng(郑有炓). Chin. Phys. B, 2020, 29(5): 058103.
[3] Improvement of memory characteristics by employing a charge trapping layer with combining bent and flat energy bands
Zhen-Jie Tang(汤振杰), Rong Li(李荣), Xi-Wei Zhang(张希威). Chin. Phys. B, 2020, 29(4): 047701.
[4] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[5] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[6] Influences of grain size and microstructure on optical properties of microcrystalline diamond films
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(1): 018103.
[7] Multiple enlarged growth of single crystal diamond by MPCVD with PCD-rimless top surface
Ze-Yang Ren(任泽阳), Jun Liu(刘俊), Kai Su(苏凯), Jin-Feng Zhang(张金风), Jin-Cheng Zhang(张进成), Sheng-Rui Xu(许晟瑞), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(12): 128103.
[8] Chemical vapor deposition growth of crystal monolayer SnS2 with NaCl-assistant
Xiao-Xu Liu(刘晓旭), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yong-Sheng Wang(王永生), Ming Fu(富鸣). Chin. Phys. B, 2019, 28(11): 118101.
[9] Direct deposition of graphene nanowalls on ceramic powders for the fabrication of a ceramic matrix composite
Hai-Tao Zhou(周海涛), Da-Bo Liu(刘大博), Fei Luo(罗飞), Ye Tian(田野), Dong-Sheng Chen(陈冬生), Bing-Wei Luo(罗炳威), Zhang Zhou(周璋), Cheng-Min Shen(申承民). Chin. Phys. B, 2019, 28(6): 068102.
[10] Suppression of indium-composition fluctuations in InGaN epitaxial layers by periodically-pulsed mixture of N2 and H2 carrier gas
Hai-Long Wang(王海龙), Xiao-Han Zhang(张晓涵), Hong-Xia Wang(王红霞), Bin Li(黎斌), Chong Chen(陈冲), Yong-Xian Li(李永贤), Huan Yan(颜欢), Zhi-Sheng Wu(吴志盛), Hao Jiang(江灏). Chin. Phys. B, 2018, 27(12): 127805.
[11] Novel graphene enhancement nanolaser based on hybrid plasmonic waveguides at optical communication wavelength
Zhengjie Xu(徐政杰), Jun Zhu(朱君), Wenju Xu(徐汶菊), Deli Fu(傅得立), Cong Hu(胡聪), Frank Jiang. Chin. Phys. B, 2018, 27(8): 088104.
[12] Gap plasmon-enhanced photoluminescence of monolayer MoS2 in hybrid nanostructure
Le Yu(余乐), Di Liu(刘頔), Xiao-Zhuo Qi(祁晓卓), Xiao Xiong(熊霄), Lan-Tian Feng(冯兰天), Ming Li(李明), Guo-Ping Guo(郭国平), Guang-Can Guo(郭光灿), Xi-Feng Ren(任希锋). Chin. Phys. B, 2018, 27(4): 047302.
[13] Facilitative effect of graphene quantum dots in MoS2 growth process by chemical vapor deposition
Lu Zhang(张璐), Yongsheng Wang(王永生), Yanfang Dong(董艳芳), Xuan Zhao(赵宣), Chen Fu(付晨), Dawei He(何大伟). Chin. Phys. B, 2018, 27(1): 018101.
[14] Nucleation mechanism and morphology evolution of MoS2 flakes grown by chemical vapor deposition
He-Ju Xu(许贺菊), Jian-Song Mi(米建松), Yun Li(李云), Bin Zhang(张彬), Ri-Dong Cong(丛日东), Guang-Sheng Fu(傅广生), Wei Yu(于威). Chin. Phys. B, 2017, 26(12): 128102.
[15] An easy way to controllably synthesize one-dimensional SmB6 topological insulator nanostructures and exploration of their field emission applications
Xun Yang(杨汛), Hai-Bo Gan(甘海波), Yan Tian(田颜), Ning-Sheng Xu(许宁生), Shao-Zhi Deng(邓少芝), Jun Chen(陈军), Huanjun Chen(陈焕君), Shi-Dong Liang(梁世东), Fei Liu(刘飞). Chin. Phys. B, 2017, 26(11): 118103.
No Suggested Reading articles found!