Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 046201    DOI: 10.1088/1674-1056/26/4/046201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influence of high pulsed magnetic field on tensile properties of TC4 alloy

Gui-Rong Li(李桂荣), Fang-Fang Wang(王芳芳), Hong-Ming Wang(王宏明), Rui Zheng(郑瑞), Fei Xue(薛飞), Jiang-Feng Cheng(程江峰)
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Abstract  

The tensile tests of TC4 alloy are carried on electronic universal testing machine in the synchronous presence of high pulsed magnetic field (HPMF) parallel to the axial direction. The effects of magnetic induction intensity (B=0, 1 T, 3 T, and 5 T) on elongation (δ) of TC4 alloy are investigated. At 3 T, the elongation arrives at a maximum value of 12.41%, which is enhanced by 23.98% in comparison with that of initial sample. The elongation curve shows that 3 T is a critical point. With B increasing, the volume fraction of α phase is enhanced from 49.7% to 55.9%, which demonstrates that the HPMF can induce the phase transformation from β phase to α phase. Furthermore, the magnetic field not only promotes the orientation preference of crystal plane along the slipping direction, but also has the effect on increasing the dislocation density. The dislocation density increases with the enhancement of magnetic induction intensity and the 3-T parameter is ascertained as a turning point from increase to decrease tendency. When B is larger than 3 T, the dislocation density decreases with the enhancement of B. The influence of magnetic field is analyzed on the basis of magneto-plasticity effect. The high magnetic field will enhance the dislocation strain energy and promote the state conversion of radical pair generated between the dislocation and obstacles from singlet into triplet state, in which is analyzed the phenomenon that the dislocation density is at an utmost with B=3 T. Finally, the inevitability of optimized 3-T parameter is further discussed on a quantum scale.

Keywords:  TC4 titanium alloy      tensile properties      microstructure      magneto-plasticity effect  
Received:  07 November 2016      Revised:  31 January 2017      Accepted manuscript online: 
PACS:  62.20.-x (Mechanical properties of solids)  
  81.40.Lm (Deformation, plasticity, and creep)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51371091, 51174099, and 51001054) and the Industrial Center of Jiangsu University, China (Grant No. ZXJG201585).

Corresponding Authors:  Gui-Rong Li     E-mail:  liguirong@ujs.edu.cn

Cite this article: 

Gui-Rong Li(李桂荣), Fang-Fang Wang(王芳芳), Hong-Ming Wang(王宏明), Rui Zheng(郑瑞), Fei Xue(薛飞), Jiang-Feng Cheng(程江峰) Influence of high pulsed magnetic field on tensile properties of TC4 alloy 2017 Chin. Phys. B 26 046201

[1] Li G R, Li Y M, Wang F F and Wang H M 2015 J. Alloys Compd. 644 750
[2] Peng X N, Guo H Z, Wang T and Yao Z K 2012 Mater. Sci. Eng. A 533 55
[3] Zhang J J, Chen Z, Wang Y X and Liu B 2008 J. Alloys Compd. 457 526
[4] Wang H M, Li P S, Zhen R, Li G R and Yuan X T 2015 Acta Phys. Sin. 64 087104 (in Chinese)
[5] Wang H M, Li G R, Zhao Y T and Chen G 2010 Mater. Sci. Eng. A 527 2881
[6] Vaucher S, Stir M and Ishizaki K 2011 Thermochim. Acta 522 151
[7] Li G R, Wang H M, Yuan X T and Zhao Y T 2013 Mater. Lett. 99 50
[8] Li G R, Li Y M, Wang F F and Wang H M 2015 Chinese Journal of Nonferrous Metals 25 331
[9] Li G R, Xue F, Wang H M, Zheng R, Zhu Y, Chu Q Z and Cheng J F 2016 Chin. Phys. B 25 106201
[10] Mattsson A E, Schultz P A and Desjarlais M P 2005 Model. Simul. Mater. Sci. Eng. 13 R1
[11] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[12] Matsumoto H and Watanabe S D 2007 Mater. Sci. Eng. A 448 39
[13] Cai Y Q, Sun J Z, Liu C J, Ma S W and Wei X C 2015 Journal of Iron and Steel Research 22 1024
[14] Jia R X, Zhang Y M, Zhang Y M and Guo H 2010 Spectroscopy and Spectral Analysis 7 1995
[15] Lubarda V A 2003 Int. J. Solids Struct. 40 3807
[16] Liu Z L, Fan T Y and Hu H Y 2006 Chin. Phys. Lett. 23 175
[17] Vattré A J and Demkowicz M J 2013 Acta Mater. 61 5172
[18] Ashby M F and Johnson K L 2006 Philos. Mag. A 20 1009
[19] Molotskii M I and Fleurov V J 2000 Phys. Chem. B 104 3813
[20] Ni S, Wang Y B, Liao X Z, Figueiredob R B and Li H J 2012 Acta Mater. 60 3181
[21] Li G R, Wang H M, Li P S, Gao L Z, Peng Z X and Zhen R 2015 Acta Phys. Sin. 64 148102 (in Chinese)
[22] Molotskii M I 2000 Mater. Sci. Eng. A 287 248
[23] Mullner P, Chernenko V A and Kostorz G 2003 J. Magn. Magn. Mater. 267 325
[1] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[7] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[8] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[9] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[10] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[11] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[12] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
[13] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
[14] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[15] Accurate prediction method for the microstructure of amorphous alloys without non-metallic elements
Wei Zhao(赵伟), Jia-Lin Cheng(成家林), Gong Li(李工), and Xin Wang(王辛). Chin. Phys. B, 2021, 30(11): 116103.
No Suggested Reading articles found!