Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 106501    DOI: 10.1088/1674-1056/26/10/106501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Negative thermal expansion and photoluminescence in solid solution (HfSc)0.83W2.25P0.83O12δ

Yuan Liang(梁源)1,2, Yong-Guang Cheng(程永光)2, Xiang-Hong Ge(葛向红)2, Bao-He Yuan(袁保合)2, Juan Guo(郭娟)2, Qian Sun(孙强)2, Er-Jun Liang(梁二军)2
1. Department of Applied Physics, Donghua University, Shanghai 201620, China;
2. School of Physical Science & Engineering and Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450052, China
Abstract  

A solid solution of (HfSc)0.83W2.25P0.83O12-δ is synthesized by the high-temperature, solid-state reaction and fast-quenching method. It is shown that it possesses an orthorhombic structure with space group Pmmm (47) and exhibits negative thermal expansion (NTE) property with low anisotropy in thermal expansion. The coefficients of thermal expansion (CTEs) for a, b, and c axes are -1.41×10-6 K-1, -2.23×10-6 K-1, and -1.87×10-6 K-1, respectively. This gives rise to volume and linear CTEs of -3.10×10-6 K-1 and -1.03×10-6 K-1, respectively. Besides, it exhibits also intense photoluminescence from 360 nm to about 600 nm. The mechanism of NTE and the correlation of the PL with axial thermal expansion property are discussed.

Keywords:  negative thermal expansion      solid solution      photoluminescence  
Received:  18 May 2017      Revised:  29 June 2017      Accepted manuscript online: 
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  61.50.-f (Structure of bulk crystals)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574276, 51302249, and 11405028) and the Fundamental Research Fund for the Central Universities, China.

Corresponding Authors:  Yuan Liang     E-mail:  yliang@dhu.edu.cn

Cite this article: 

Yuan Liang(梁源), Yong-Guang Cheng(程永光), Xiang-Hong Ge(葛向红), Bao-He Yuan(袁保合), Juan Guo(郭娟), Qian Sun(孙强), Er-Jun Liang(梁二军) Negative thermal expansion and photoluminescence in solid solution (HfSc)0.83W2.25P0.83O12δ 2017 Chin. Phys. B 26 106501

[1] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[2] Tong P, Wang B S and Sun Y P 2013 Chin. Phys. B 22 067501
[3] Chen J, Hu L, Deng J X and Xing X R 2015 Chem. Soc. Rev. 44 3522
[4] Goodwin A L, Calleja M, Conterio M J, Dove M T, Evans J S O, Keen D A, Peters L and Tucker M G 2008 Science 319 794
[5] Bridges F, Keiber T, Juhas P, Billinge S J L, Sutton L, Wilde J and Kowach G R 2014 Phys. Rev. Lett. 112 045505
[6] Li C W, Tang X L, Mu? oz J A, Keith J B, Tracy S J, Abernathy D L and Fultz B 2011 Phys. Rev. Lett. 107 195504
[7] Marinkovic B A, Ari M, Avillez R R, Rizzo F, Ferreira F F, Miller K J, Johnson M B and White M A 2009 Chem. Mater. 21 2886
[8] Liu X, Cheng Y, Liang E and Chao M 2014 Phys. Chem. Chem. Phys. 16 12848
[9] Ding P, Liang E J, Jia Y and Du Z Y 2008 J. Phys.:Condens. Matter 20 275224
[10] Li W, Huang R J, Wang W, Liu H M, Han Y M, Huang C J and Li L F 2015 J. Alloys Compd. 628 308
[11] Chu L H, Wang C, Yan J, Na Y Y, Ding L, Sun Y and Wen Y C 2012 Scr. Mater. 67 173
[12] Tan J, Huang R J, Li W, Han Y M and Li L F 2014 J. Alloys Compd. 593 103
[13] Tong P, Louca D, King G, Llobet A, Lin J C and Sun Y P 2013 Appl. Phys. Lett. 102 041908
[14] Yamada I, Marukawa S, Murakami M and Mori S 2014 Appl. Phys. Lett. 105 231906
[15] Azuma M, Chen W, Seki H, Czapski M, Olga S, Oka K, Mizumaki M, Watanuki T, Ishimatsu N, Kawamura N, Ishiwata S, Tucker M G, Shimakawa Y and Attfield J P 2011 Nat. Commun. 2 347
[16] Chen J, Wang F F, Huang Q Z, Hu L, Song X P, Deng J X, Yu R B and Xing X R 2013 Sci. Rep. 3 2458
[17] Liang E J, Liang Y, Zhao Y, Liu J and Jiang Y 2008 J. Phys. Chem. A 112 12582
[18] Evans J S O, Hanson J C and Sleight A W 1998 Acta Cryst. B 54 705
[19] Yuan B H, Liu X S, Mao Y C, Wang J Q, Guo J, Cheng Y G, Song W B, Liang E J and Chao M J 2016 Mater. Chem. Phys. 170 162
[20] Yuan B H, Yuan H L, Song W B, Liu X S, Cheng Y G, Chao M J and Liang E J 2014 Chin. Phys. Lett. 31 076501
[21] Liang Y, Xing H Z, Chao M J and Liang E J 2014 Acta Phys. Sin. 63 248106(in Chinese)
[22] Woodcock D A, Lightfoot P and Ritter C 2000 J. Solid State Chem. 149 92
[23] Sumithra S and Umarji A M 2006 Solid State Sci. 8 1453
[24] Liang E J, Huo H L, Wang J P and Chao M J 2008 J. Phys. Chem. C 112 6577
[25] Hu L, Chen J, Sanson A, Wu H, Rodriguez C G, Olivi L, Ren Y, Fan L L, Deng J X and Xing X R 2016 J. Am. Chem. Soc. 138 8320
[26] Miller K J, Romao C P, Bieringer M, Marinkovic B A, Prisco L and White M A 2013 J. Am. Ceram. Soc. 96 561
[27] Cheng Y G, Mao Y C, Liu X S, Yuan B H, Chao M J and Liang E J 2016 Chin. Phys. B 25 086501
[28] Suzuki T and Omote A 2004 J. Am. Ceram. Soc. 87 1365
[29] Gindhart A M, Lind C and Green M 2008 J. Mater. Res. 23 210
[30] Baiz T I, Gindhart A M, Kraemer S K and Lind C 2008 J. Sol-Gel. Sci. Technol. 47 128
[31] Li F, Liu X S, Song W B, Yuan B H, Cheng Y G, Yuan H L, Cheng F X, Chao M J and Liang E J 2014 J. Solid State Chem. 218 15
[32] Marinkovic B A, Jardim P M, Ari M, Avillez R R, Rizzo F and Ferreira F F 2008 Phys. Stat. Sol. 245 2514
[33] Song W B, Liang E J, Liu X S, Li Z Y, Yuan B H and Wang J Q 2013 Chin. Phys. Lett. 30 126502
[34] Ge X H, Mao Y C, Li L, Li L P, Yuan N, Cheng Y G, Guo J, Chao M J and Liang E J 2016 Chin. Phys. Lett. 33 046503
[35] Ge X H, Mao Y C, Liu X S, Cheng Y G, Yuan B H, Chao M J and Liang E J 2016 Sci. Rep. 6 24832
[36] Cheng Y G, Liang Y, Ge X H, Liu X S, Yuan B H, Guo J, Chao M J and Liang E J 2016 RSC Adv. 6 53657
[37] Cheng Y G, Liang Y, Mao Y C, Ge X H, Yuan B H, Guo J, Chao M J and Liang E J 2017 Mater. Res. Bull. 85 176
[38] Ge X H, Liu X S, Cheng Y G, Yuan B H, Chen D X, Chao M J, Guo J, Wang J Q and Liang E J 2016 J. Appl. Phys. 120 205101
[39] Omote A, Yotsuhashi S, Zenitani Y and Yamada Y 2011 J. Am. Ceram. Soc. 94 2285
[40] Dubois F, Goutenoire F, Laligant Y, Suard E and Lacorre P 2001 J. Solid State Chem. 159 228
[41] Prisco L P, Ponton P I, Guaman M V, Avillez R R, Romao C P, Johnson M B, White M A and Marinkovic B A 2016 J. Am. Ceram. Soc. 99 1742
[42] Li T, Ge X H, Liu X S, Cheng Y G, Liu Y M, Yuan H L, Li S L, Liu Y Y, Guo J, Li Y X and Liang E J 2016 Mater. Express 6 515
[43] Hopfield J J, Thomas D G and Gershenzon M 1963 Phys. Rev. Lett. 10 62
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[3] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[4] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[5] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[6] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[7] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[8] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[9] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[10] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[11] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[12] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[13] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[14] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[15] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
No Suggested Reading articles found!