Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 100301    DOI: 10.1088/1674-1056/19/10/100301
GENERAL Prev   Next  

Instantaneous solitons and fractal solitons for a (2+1)-dimensional nonlinear system

Pan Zhen-Huan(潘震环), Ma Song-Hua(马松华), and Fang Jian-Ping(方建平)
Department of Physics, Zhejiang Lishui University, Lishui 323000, China
Abstract  By an improved projective equation approach and a linear variable separation approach, a new family of exact solutions of the (2+1)-dimensional Broek–Kaup system is derived. Based on the derived solitary wave solution and by selecting appropriate functions, some novel localized excitations such as instantaneous solitons and fractal solitons are investigated.
Keywords:  improved projective equation approach      Broek–Kaup system      exact solutions      instantaneous solitons and fractal solitons  
Received:  05 April 2010      Revised:  12 May 2010      Accepted manuscript online: 
PACS:  02.30.Sa (Functional analysis)  
  05.45.Df (Fractals)  
  05.45.Yv (Solitons)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant Nos. Y606252 and Y604106), the Scientific Research Fund of the Education Department of Zhejiang Province of China (Grant No. 200805981), and the Natural Science Foundation of Zhejiang Lishui University (Grant No. KZ09005).

Cite this article: 

Pan Zhen-Huan(潘震环), Ma Song-Hua(马松华), and Fang Jian-Ping(方建平) Instantaneous solitons and fractal solitons for a (2+1)-dimensional nonlinear system 2010 Chin. Phys. B 19 100301

[1] Lou S Y 1996 Commun. Theor. Phys. (Beijing, China) 26 487
[2] Lai D W C and Chow K W 2001 J. Phys. Soc. Jpn. 70 666
[3] Zhang J F 2002 Commun. Theor. Phys. (Beijing, China) 37 277
[4] Zhang S L, Zhu X N, Wang Y M and Lou S Y 2008 Commun. Theor. Phys. (Beijing, China) 49 829
[5] Zhang S L and Lou S Y 2007 Commun. Theor. Phys. (Beijing, China) 48 385
[6] Taogetusang and Sirendaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese)
[7] Taogetusang and Sirendaoerji 2009 Acta Phys. Sin. 58 5887 (in Chinese)
[8] Li B Q, Ma Y L and Xu M B 2010 Acta Phys. Sin. 59 1409 (in Chinese)
[9] Ma Y L, Li B Q and Sun J Z 2009 Acta Phys. Sin. 58 7042 (in Chinese)
[10] Kivshar Y S and Melomend B A 1989 Rev. Mod. Phys. 61 765
[11] Stegemant G I and Segev M 1999 Science 286 1518
[12] Gollub J P and Gross M C 2000 Nature 404 710
[13] Fang J P and Zheng C L 2005 Acta Phys. Sin. 54 670 (in Chinese)
[14] Ma S H, Fang J P and Zhu H P 2007 Acta Phys. Sin. 56 4319 (in Chinese)
[15] Ma S H, Wu X H, Fang J P and Zheng C L 2008 Acta Phys. Sin. 57 11 (in Chinese)
[16] Ma S H, Fang J P, Hong B H and Zheng C L 2009 Chaos, Solitons and Fractals 40 1352
[17] Ma S H, Fang J P and Zheng C L 2008 Chin. Phys. 17 2767
[18] Ma S H and Fang J P 2009 Z. Naturforsch a 64 37
[19] Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
[20] Zakharov V E and Appl L Li 1998 Mech. Tech. Phys. 9 190
[21] Chen C L and Li Y S 2002 Commun. Theor. Phys. (Beijing, China) 38 129
[22] Ying J P and Lou S Y 2001 Z. Naturforsch 56 619
[23] Fang J P and Zheng C L 2005 Chin. Phys. 14 669
[1] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[2] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[3] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[4] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[5] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[6] Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system
Zhu Wei-Ting (朱维婷), Ma Song-Hua (马松华), Fang Jian-Ping (方建平), Ma Zheng-Yi (马正义), Zhu Hai-Ping (朱海平). Chin. Phys. B, 2014, 23(6): 060505.
[7] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
[8] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义). Chin. Phys. B, 2013, 22(5): 050510.
[9] Exact solutions of (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations
Liu Ping (刘萍), Li Zi-Liang (李子良). Chin. Phys. B, 2013, 22(5): 050204.
[10] Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation
Vikas Kumar, R. K. Gupta, Ram Jiwari. Chin. Phys. B, 2013, 22(5): 050201.
[11] Novel exact solutions of coupled nonlinear Schrödinger equations with time–space modulation
Chen Jun-Chao (陈俊超), Li Biao (李彪), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(11): 110306.
[12] Skyrmion crystals in pseudo-spin-1/2 Bose–Einstein condensates
Zhang Cong (张聪), Guo Wen-An (郭文安), Feng Shi-Ping (冯世平), Yang Shi-Jie (杨师杰). Chin. Phys. B, 2013, 22(11): 110308.
[13] On certain new exact solutions of the Einstein equations for axisymmetric rotating fields
Lakhveer Kaur, R. K. Gupta. Chin. Phys. B, 2013, 22(10): 100203.
[14] New exact solutions of Einstein–Maxwell equations for magnetostatic fields
Nisha Goyal, R. K. Gupta. Chin. Phys. B, 2012, 21(9): 090401.
[15] Soliton excitations and chaotic patterns for the (2+1)-dimensional Boiti–Leon–Pempinelli system
Yang Zheng (杨征), Ma Song-Hua (马松华), Fang Jian-Ping (方建平). Chin. Phys. B, 2011, 20(6): 060506.
No Suggested Reading articles found!