|
|
Interaction behaviours of solitoffs: fission, fusion, reconnection and annihilation |
Li Jun-Min(李军民)a), Liang Zu-Feng(梁祖峰)b)†, and Tang Xiao-Yan(唐晓艳)a)‡ |
a Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China; b Department of Physics, Hangzhou Normal University, Hangzhou 310036, China |
|
|
Abstract The interactions between solitoffs are extensively investigated. Besides the known solitoff fission and fusion interactions, two new types of solitoff interactions are discovered, named the solitoff reconnection and the solitoff annihilation. Taking the asymmetric Nizhnik–Novikov–Veselov equation as an illustrative system, five types of solitoff interactions are graphically revealed on the basis of the analytical solution obtained by the modified tanh function expansion method.
|
Received: 03 August 2009
Revised: 03 June 2010
Accepted manuscript online:
|
PACS:
|
02.30.Sa
|
(Functional analysis)
|
|
05.45.Yv
|
(Solitons)
|
|
Fund: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20070248120), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the National Natural Science Foundation of China (Grant No. 10905038), and the Shanghai Rising-Star Programme, China (Grant No. 09QA1403300). |
Cite this article:
Li Jun-Min(李军民), Liang Zu-Feng(梁祖峰), and Tang Xiao-Yan(唐晓艳) Interaction behaviours of solitoffs: fission, fusion, reconnection and annihilation 2010 Chin. Phys. B 19 100205
|
[1] |
Chow K W, Grimshaw R H J and Ding E 2005 Wave Motion 43 158
|
[2] |
Radhakrishnan R, Kundu A and Lakshmanan M 1999 Phys. Rev. E 60 3314
|
[3] |
Calogero F and Degasperis A 2005 Physica D 200 242
|
[4] |
Lou S Y 2002 J. Phys. A: Math. Gen. 35 10619
|
[5] |
Lou S Y 2003 J. Phys. A: Math. Gen. 36 3877
|
[6] |
Lou S Y, Hu H C and Tang X Y 2005 Phys. Rev. E 71 036604
|
[7] |
Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601
|
[8] |
Yang J R and Mao J J 2008 Chin. Phys. B 17 4337
|
[9] |
Li H M 2008 Chin. Phys. B 17 759
|
[10] |
Deng X J, Yang Z Z and Han L B 2009 Chin. Phys. B 18 3169
|
[11] |
Song J and Yang L G 2009 Chin. Phys. B 18 2873
|
[12] |
Zhao L N, Tong Z S and Lin J 2009 Chin. Phys. B 18 2352
|
[13] |
Nishinari K, Abe K and Satsuma J 1993 J. Phys. Soc. Jpn. 62 2021
|
[14] |
Tang X Y, Li J M and Lou S Y 2007 Phys. Scr. 75 201
|
[15] |
Malfliet W 1992 Am. J. Phys. 60 650
|
[16] |
Li Z B and Wang M L 1993 J. Phys. A: Math. Gen. 26 6927
|
[17] |
Parkes E J and Duffy B R 1996 Comput. Phys. Commun. 98 288
|
[18] |
Duffy B R and Parkes E J 1996 Phys. Lett. A 214 271
|
[19] |
Fan E G 2000 Phys. Lett. A 277 212
|
[20] |
Fan E G, Zhang J and Benny H 2001 Phys. Lett. A 291 376
|
[21] |
Chen Y, Wang Q and Lang Y H 2005 Z. Naturforsch a 60 127
|
[22] |
Darwish A and Fan E G 2004 Chaos, Solitons and Fractals 20 609
|
[23] |
Zheng C L, Fang J P and Chen L Q 2005 Chaos, Solitons and Fractals 23 1741
|
[24] |
Dai C H and Zhang J F 2006 J. Math. Phys. 47 043501
|
[25] |
Camassa R and Holm D D 1993 Phys. Rev. Lett. 71 1661
|
[26] |
Constantin A and McKean H P 1999 Commun. Pure. Appl. Math. 52 949
|
[27] |
Constantin A and Escher J 1998 Commun. Pure. Appl. Math. 51 475
|
[28] |
Lenells J 2004 Int. Math. Res. Not. 10 485
|
[29] |
Constantin A and Molinet L 2000 Commun. Math. Phys. 211 45
|
[30] |
Lou S Y 1995 J. Phys. A: Math. Gen. 28 7227
|
[31] |
Boiti M, Leon J J P, Manna M and Penpinelli F 1986 Inverse Problem 2 271
|
[32] |
Boiti M, Leon J J P, Manna M and Penpinelli F 1987 Inverse Problem 3 25
|
[33] |
Clarkson P A and Mansfield E L 1994 Nonlinearity 7 975
|
[34] |
Radha R and Lakshmanan M 1994 J. Math. Phys. 35 4746
|
[35] |
Lou S Y and Ruan H Y 2001 J. Phys. A: Math. Gen. 34 305
|
[36] |
Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
|
[37] |
Hu H C, Tang X Y, Lou S Y and Liu Q P 2004 Chaos, Solitons and Fractals 22 327
|
[38] |
Ruan H Y and Chen Y X 2004 J. Phys. A: Math. Gen. 37 2709
|
[39] |
Tang X Y and Lou S Y 2002 Chaos, Solitons and Fractals 14 1451
|
[40] |
Tang X Y and Lou S Y 2003 J. Math. Phys. 44 4000
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|