Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 090302    DOI: 10.1088/1674-1056/ac615a
GENERAL Prev   Next  

Steering quantum nonlocalities of quantum dot system suffering from decoherence

Huan Yang(杨欢)1,2, Ling-Ling Xing(邢玲玲)1, Zhi-Yong Ding(丁智勇)2, Gang Zhang(张刚)1,†, and Liu Ye(叶柳)3
1 School of Electrical and Photoelectronic Engineering, West Anhui University, Lu'an 237012, China;
2 Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes, Fuyang Normal University, Fuyang 236037, China;
3 School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
Abstract  The important applications of quantum dot system are to implement logic operations and achieve universal quantum computing based on different quantum nonlocalities. Here, we characterize the quantum steering, Bell nonlocality, and nonlocal advantage of quantum coherence (NAQC) of quantum dot system suffering nonunital and unital channels. The results reveal that quantum steering, Bell nonlocality, and NAQC can display the traits of dissipation, enhancement, and freezing. One can achieve the detections of quantum steering, Bell nonlocality, and NAQC of quantum dot system in different situations. Among these quantum nonlocalities, NAQC is the most fragile, and it is most easily influenced by different system parameters. Furthermore, considering quantum dot system coupling with amplitude damping channel and phase damping channel, these quantum nonlocalities degenerate with the enlargement of the channel parameters $t$ and $\varGamma$. Remarkably, measurement reversal can effectively control and enhance quantum steering, Bell nonlocality, and NAQC of quantum dot system suffering from decoherence, especially in the scenarios of the amplitude damping channel and strong operation strength.
Keywords:  quantum nonlocalities      quantum dot system      decoherence      steering  
Received:  06 December 2021      Revised:  11 March 2022      Accepted manuscript online:  28 March 2022
PACS:  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175001), the Natural Science Research Key Project of the Education Department of Anhui Province, China (Grant Nos. KJ2021A0943 and KJ2020A0527), the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2021-026), the Anhui Provincial Natural Science Foundation, China (Grant Nos. 2108085MA18 and 2008085MA20), the Key Project of Program for Excellent Young Talents of Anhui University, China (Grant No. gxyqZD2019042), the Open Project of Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes, China (Grant No. FMDI202106), and the Research Start-up Funding Project of High Level Talent of West Anhui University, China (Grant No. WGKQ2021048).
Corresponding Authors:  Gang Zhang     E-mail:  zhanggang@wxc.edu.cn

Cite this article: 

Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳) Steering quantum nonlocalities of quantum dot system suffering from decoherence 2022 Chin. Phys. B 31 090302

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555
[3] Schrödinger E 1936 Proc. Cambridge Philos. Soc. 32 446
[4] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[5] Uola R, Costa A C S, Nguyen H C and Gühne O 2020 Rev. Mod. Phys. 92 015001
[6] Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman H M 2012 Phys. Rev. A 85 010301(R)
[7] Reid M D 2013 Phys. Rev. A 88 062338
[8] He Q, Rosales-Zarate L, Adesso G and Reid M D 2015 Phys. Rev. Lett. 115 180502
[9] Zhi Law Y, Phuc Thinh L, Bancal J D and Scarani V 2014 J. Phys. A:Math. Theor. 47 424028
[10] Passaro E, Cavalcanti D, Skrzypczyk P and Acin A 2015 New J. Phys. 17 113010
[11] Piani M and Watrous J 2015 Phys. Rev. Lett. 114 060404
[12] Goswami S, Bhattacharya B, Das D, Sasmal S, Jebaratnam C and Majumdar A S 2018 Phys. Rev. A 98 022311
[13] Supic I and Hoban M J 2016 New J. Phys. 18 075006
[14] Wang M, Xiang Y, Kang H, Han D, Liu Y, He Q, Gong Q, Su X and Peng K 2020 Phys. Rev. Lett. 125 260506
[15] Bian Z, Majumdar A S, Jebaratnam C, Wang K, Xiao L, Zhan X, Zhang Y and Xue P 2020 Phys. Rev. A 101 020301(R)
[16] Walborn S P, Salles A, Gomes R M, Toscano F and Souto Ribeiro P H 2011 Phys. Rev. Lett. 106 130402
[17] Schneeloch J, Broadbent C J, Walborn S P, Cavalcanti E G and Howell J C 2013 Phys. Rev. A 87 062103
[18] Costa A C S, Uola R and Gühne O 2018 Phys. Rev. A 98 050104(R)
[19] Kriváchy T, Fröwis F and Brunner N 2018 Phys. Rev. A 98 062111
[20] Wollmann S, Uola R and Costa A C S 2020 Phys. Rev. Lett. 125 020404
[21] Yang H, Ding Z Y, Wang D, Yuan H, Song X K, Yang J, Zhang C J and Ye L 2020 Phys. Rev. A 101 022324
[22] Pramanik T, Kaplan M and Majumdar A S 2014 Phys. Rev. A 90 050305(R)
[23] Cavalcanti E G, Jones S J, Wiseman H M and Reid M D 2009 Phys. Rev. A 80 032112
[24] Saunders D J, Jones S J, Wiseman H M and Pryde G J 2010 Nat. Phys. 6 845
[25] Costa A C S and Angelo R M 2016 Phys. Rev. A 93 020103(R)
[26] Gupta S, Maity A G, Das D, Roy A and Majumdar A S 2021 Phys. Rev. A 103 022421
[27] Wu X, You B and Zhou T 2021 Phys. Rev. A 103 012212
[28] Zhao Y Y, Ku H Y, Chen S L, Chen H B, Nori F, Xiang G Y, Li C F, Guo G C and Chen Y N 2020 NPJ. Quantum Inform. 6 77
[29] Yang H, Ding Z Y, Song X K, Yuan H, Wang D, Yang J, Zhang C J and Ye L 2021 Phys. Rev. A 103 022207
[30] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
[31] Bell J S 1964 Physics 1 195
[32] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[33] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419
[34] Holz T, Kampermann H and Bruß D 2020 Phys. Rev. Research 2 023251
[35] Tavakoli A, Żukowski M and Brukner Č 2020 Quantum 4 316
[36] Šupić I and Bowles J 2020 Quantum 4 337
[37] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[38] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[39] Hu M L, Hu X Y, Wang J C, Peng Y, Zhang Y R and H Fan 2018 Phys. Rep. 762-764 1
[40] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
[41] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
[42] Piani M, Cianciaruso M, Bromley T R, Napoli C, Johnston N and Adesso G 2016 Phys. Rev. A 93 042107
[43] Girolami D 2014 Phys. Rev. Lett. 113 170401
[44] Yu C S 2017 Phys. Rev. A 95 042337
[45] Mondal D, Pramanik T and Pati A K 2017 Phys. Rev. A 95 010301(R)
[46] Mondal D and Kaszlikowski D 2018 Phys. Rev. A 98 052330
[47] Hu M L, Wang X M and Fan H 2018 Phys. Rev. A 98 032317
[48] Hu M L and Fan H 2018 Phys. Rev. A 98 022312
[49] Datta S and Majumdar A S 2018 Phys. Rev. A 98 042311
[50] Ding Z Y, Yang H, Yuan H, Wang D, Yang J and Ye L 2019 Phys. Rev. A 100 022308
[51] Hu M L, Zhang Y H and Fan H 2021 Chin. Phys. B 30 030308
[52] Ming F, Song X K, Ling J J, Ye L and Wang D 2020 Eur. Phys. J. C 80 275
[53] Du M M, Wang D and Ye L 2017 Quantum Inf. Process. 16 218
[54] Xie Y X 2021 Laser Phys. Lett. 18 055204
[55] Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K 2007 Science 318 1430
[56] Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P and Vandersypen L M K 2006 Nature 442 766
[57] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[58] Borras A and Blaauboer M 2011 Phys. Rev. B 84 033301
[59] Shulman M D, Dial1 O E, Harvey S P, Bluhm H, Umansky V and Yacoby A 2012 Science 336 202
[60] Bluhm H, Foletti S, Mahalu D, Umansky V and Yacoby A 2010 Phys. Rev. Lett. 105 216803
[61] Pioro-Ladriére M, Obata T, Tokura Y, Shin Y S, Kubo T, Yoshida K, Taniyama T and Tarucha S 2008 Nat. Phys. 4 776
[62] Ricco L S, de Souza M, Figueira M S, Shelykh I A and Seridonio A C 2019 Phys. Rev. B 99 155159
[63] Lan K, Du Q, Kang L, Tang X, Jiang L, Zhang Y and Cai X 2020 Phys. Rev. B 101 174302
[64] Aranguren-Quintero D F, Ramos E, Silva-Valencia J, Figueira M S, Oliveira L N and Franco R 2021 Phys. Rev. B 103 085112
[65] Aleiner I L, Brouwer P W and Glazman L I 2002 Phys. Rep. 358 309
[66] Pustilnik M and Glazman L I 2000 Phys. Rev. Lett. 85 2993
[67] Averin D V and Likharev K K 1986 J. Low Temp. Phys. 62 345
[68] Wang X, Miranowicz A, Li H R and Nori F 2016 Phys. Rev. A 93 063861
[69] Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601
[70] Berrada K 2020 Phys. E Low-dimens. Syst. Nanostruct. 116 113784
[71] Sanchez-Ruiz J 1995 Phys. Lett. A 201 125
[72] Horodecki R, Horodecki P and Horodecki M 1995 Phys. Lett. A 200 340
[73] Horodecki R 1996 Phys. Lett. A 210 223
[74] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[75] Korotkov A N and Keane K 2010 Phys. Rev. A 81 040103(R)
[1] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[2] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[3] Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[4] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[5] Generation of tripartite Einstein-Podolsky-Rosen steering by cascaded nonlinear process
Yu Liu(刘瑜), Su-Ling Liang(梁素玲), Guang-Ri Jin(金光日), You-Bin Yu(俞友宾), Jian-Yu Lan(蓝建宇), Xiao-Bin He(何小斌), Kang-Xian Guo(郭康贤). Chin. Phys. B, 2020, 29(5): 050301.
[6] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[7] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[8] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[9] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[10] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[11] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[12] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[13] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[14] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[15] Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮). Chin. Phys. B, 2018, 27(12): 120304.
No Suggested Reading articles found!