Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 028701    DOI: 10.1088/1674-1056/ac0cd5
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Terahertz generation and detection of LT-GaAs thin film photoconductive antennas excited by lasers of different wavelengths

Xin Liu(刘欣), Qing-Hao Meng(孟庆昊), Jing Ding(丁晶), Zhi-Chen Bai(白志晨), Jia-Hui Wang(王佳慧), Cong Zhang(张聪), Bo Su(苏波), and Cun-Lin Zhang(张存林)
Beijing Advanced Innovation Center for Imaging Theory and Technology, Beijing Key Laboratory for Terahertz Spectroscopy and Imaging;Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, China
Abstract  A new method of generating and detecting terahertz waves is proposed. Low-temperature-grown gallium arsenide (LT-GaAs) thin films are prepared by etching a sacrificial layer (AlAs) in a four-layer epitaxial structure constituted with LT-GaAs, AlAs, GaAs, and semi-insulating gallium arsenide (SI-GaAs). The thin films are then transferred to clean silicon for fabricating the LT-GaAs thin film antennas. The quality and transmission characteristics of the films are analyzed by an 800-nm asynchronous ultrafast time domain spectroscopy system, and the degree of bonding between the film and silicon wafer is determined. Two LT-GaAs thin film antennas for generating and detecting the terahertz waves are tested with a 1550-nm femtosecond laser. The terahertz signal is successfully detected, proving the feasibility of this home-made LT-GaAs photoconductive antennas. This work lays a foundation for studying the mechanism of terahertz wave generation in GaAs photoconductive antennas below the semiconductor band gap.
Keywords:  terahertz      low-temperature-grown GaAs      photoconductive antenna      1550-nm laser  
Received:  29 April 2021      Revised:  11 June 2021      Accepted manuscript online:  21 June 2021
PACS:  87.50.U (Millimeter/terahertz fields effects)  
  73.21.Cd (Superlattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61575131). The authors would like to thank Editage (www.editage.com) for English language editing.
Corresponding Authors:  Bo Su     E-mail:  subo75@cnu.edu.cn

Cite this article: 

Xin Liu(刘欣), Qing-Hao Meng(孟庆昊), Jing Ding(丁晶), Zhi-Chen Bai(白志晨), Jia-Hui Wang(王佳慧), Cong Zhang(张聪), Bo Su(苏波), and Cun-Lin Zhang(张存林) Terahertz generation and detection of LT-GaAs thin film photoconductive antennas excited by lasers of different wavelengths 2022 Chin. Phys. B 31 028701

[1] Huber R, Tauser F, Brodschelm A and Bichler M 2001 Nature 414 286
[2] Ramundo Orlando A and Gallerano G P 2009 J. Infrared Millimte. Terahz Waves 30 1308
[3] Ho L, Pepper M and Taday P 2008 Nat. Photon. 2 541
[4] Hai-Bo L, Zhong H, Karpowicz N, Chen Y and Xi C Z 2007 Proc. IEEE 95 1514
[5] Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jördens C, Hochrein T and Koch M 2010 Appl. Opt. 49 48
[6] Emma P M and Vincent P W 2009 Photodiagnosis and Photodynamic Therapy 6 128
[7] Dragoman D and Dragoman M 2004 Prog. Quantum Electron 28 1
[8] Wu S Q, Xiong G and Cheng W 2016 DEStech Transactions on Engineering and Technology Research ICMITE
[9] Ghaffari M and Sadr A 2012 International Conference on Infrared IEEE 1
[10] Wang H G, Song Q Y, Cai Y, Lin Q G, Lu X W, Shangguan H C, Ai Y X and Xu S X 2020 Chin. Phy. B 29 097404
[11] Xie S Y, Yang F, Huang X, Yu X and Gao B 2020 Transactions of China Electrotechnical Society 35 2698
[12] Salem B, Morris D and Aimez V 2005 J. Phys. Condens. Matter. 17 7327
[13] Xu J X, Li J L, Wei S H, et al. 2017 Chin. Phys. B 26 088702
[14] Auston D H and Simith P R 1983 Phys. Lett. 43 631
[15] Hattori T, Tukamoto K and Nakatsuka H 2001 Jpn. J. Appl. Phys. 40 4907
[16] Wu J Y, Xu X F and Wei L F 2020 Chin. Phys. B 29 094202
[17] Cui L, Zeng Y and Zhao G 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics p. 143
[18] Zhang C, Su B, Zhang H F, Wu Y X, He J S and Zhang C L 2019 Spectrosc Spect Anal. 10 3308
[19] Billet M, Latzel P, Pavanello F, Ducournau G, Lampin J F and Peytavit E 2016 Appl. Phys. Lett. 1 076102
[20] Korfunenko S A, Grachev Y V and Bespalov V G 2018 J Phys Conf Ser. 1062 012001
[21] Tani M, Lee K S and Zhang X C 2000 Appl. Phys. Lett. 77 1396
[22] Kataoka T, Kajikawa K and Kitagawa J 2010 Appl. Phys. Lett. 97 201110
[23] RaMer J M, Ospald F and Von Freymann G 2013 Appl. Phys. Lett. 103 021119
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[12] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[13] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!