Shao-Ying Meng(孟少英)1, Mei-Yi Chen(陈美伊)1, Jie Ji(季杰)1, Wei-Wei Shi(史伟伟)1, Qiang Fu(付强)1, Qian-Qian Bao(鲍倩倩)1, Xi-Hao Chen(陈希浩)1,†, and Ling-An Wu(吴令安)2
1 Key Laboratory of Optoelectronic Devices and Detection Technology, School of Physics, Liaoning University, Shenyang 110036, China; 2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract It is generally believed that, in ghost imaging, there has to be a compromise between resolution and visibility. Here we propose and demonstrate an iterative filtered ghost imaging scheme whereby a super-resolution image of a grayscale object is achieved, while at the same time the signal-to-noise ratio (SNR) and visibility are greatly improved, without adding complexity. The dependence of the SNR, visibility, and resolution on the number of iterations is also investigated and discussed. Moreover, with the use of compressed sensing the sampling number can be reduced to less than 1% of the Nyquist limit, while maintaining image quality with a resolution that can exceed the Rayleigh diffraction bound by more than a factor of 10.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504302), the National Natural Science Foundation of China (Grant No. 61975229), and Civil Space Project (Grant No. D040301).
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安) Iterative filtered ghost imaging 2022 Chin. Phys. B 31 028702
[1] Pittman T, Shih Y H, Strekalov D and Sergienko A 1995 Phys. Rev. A52 R3429 [2] Cheng J and Han S 2004 Phys. Rev. Lett.92 093903 [3] Brambilla A E, Bache M and Lugiato L A 2004 Phys. Rev. Lett.93 093602 [4] Cai Y J and Zhu S Y 2005 Phys. Rev. E71 056607 [5] Cao D Z, Xiong J and Wang K G 2005 Phys. Rev. A71 013801 [6] Valencia A, Scarcelli G, D'Angelo M and Shih Y 2005 Phys. Rev. Lett.94 063601 [7] Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett.30 2354 [8] Chen X H, Liu Q, Luo K H and Wu L A 2009 Opt. Lett.34 695 [9] Gong W L and Han S S 2011 Opt. Lett.36 394 [10] Cheng J 2009 Opt. Express17 7916 [11] Radwell N, Mitchell K J, Gibson G M, Edgar M P, Bowman R and Padgett M J 2014 Optica1 285 [12] Zhao C Q, Gong W L, Chen M L, Li E R, Wang H, Xu W D and Han S S 2012 Appl. Phys. Lett.101 141123 [13] Clemente P, Durn V, Torres-Company V, Tajahuerce E and Lancis J 2010 Opt. Lett.35 2391 [14] Chen X H, Agafonov I N, Luo K H, Liu Q, Xian R, Chekhova M V and Wu L A 2010 Opt. Lett.35 1166 [15] Ferri F, Magatti D, Lugiato L A and Gatti A 2010 Phys. Rev. Lett.104 253603 [16] Shapiro J H 2008 Phys. Rev. A78 061802 [17] Sun M J, Edgar M P, Phillips D B, Gibson G M and Padgett M J 2016 Opt. Express24 010476 [18] Luo K H, Huang B Q, Zheng W M and Wu L A 2012 Chin. Phys. Lett.29 074216 [19] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett.95 131110 [20] Shechtman Y, Gazit S, Szameit A, Eldar Y C and Segev M 2010 Opt. Lett.35 1148 [21] Zhang P L, Gong W L, Shen X, Huang D J and Han S S 2009 Opt. Lett.34 1222 [22] Sprigg J, Peng T and Shih Y H 2016 Sci. Rep.6 38077 [23] Gong W L and Han S S 2012 Phys. Lett. A376 1519 [24] Oh J E, Cho Y W, Scarcelli G and Kim Y H 2013 Opt. Lett.38 682 [25] Yao X R, Li L Z, Liu X F, Yu W K and Zhai G J 2013 Chin. Phys. B24 044203 [26] Chen X H, Kong F H, Fu Q, Meng S Y and Wu L A 2017 Opt. Lett.42 5290 [27] Meng S Y, Sha Y H, Fu Q, Bao Q Q, Shi W W, Li G D, Chen X H and Wu L A 2018 Opt. Lett.43 4759 [28] Wang W, Wang Y P, Li J H, Yang X X and Wu Y 2014 Opt. Lett.39 5150 [29] Yao X R, Yu W K, Liu X F, Li L Z, Li M F, Wu L A and Zhai G J 2014 Opt. Express22 24268 [30] Horisaki R, Takagi R and Tanida J 2016 Opt. Express24 13738 [31] Yu M L, Wang W, Wang H O, Wang H C, Li G W, Chen N and Situ G H 2017 Sci. Rep.7 17865 [32] He Y C, Wang G, Dong G X, Zhu S T, Chen H, Zhang A X and Xu Z 2018 Sci. Rep.8 6469 [33] Meng S Y, Shi W W, Ji J, Tao J J, Fu Q, Chen X H and Wu L A 2020 Chin. Phys. B29 128704 [34] Wang K G and Cao D Z 2004 Phys. Rev. A70 041801 [35] Li M F, Zhang Y R, Luo K H, Wu L A and Fan H 2013 Phys. Rev. A87 033813 [36] Basano L and Ottonello P 2016 Opt. Express15 12386
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.