Abstract The doping process and thermoelectric properties of donor-acceptor (D-A) type copolymers are investigated with the representative poly([2,6'-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b] dithiophene]3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophenediyl)) (PTB7-Th). The PTB7-Th is doped by FeCl3 and only polarons are induced in its doped films. The results reveal that the electron-rich donor units within PTB7-Th lose electrons preferentially at the initial stage of the oxidation and then the acceptor units begin to be oxidized at a high doping concentration. The energy levels of polarons and the Fermi level of the doped PTB7-Th remain almost unchange with different doping levels. However, the morphology of the PTB7-Th films could be deteriorated as the doping levels are improved, which is one of the main reasons for the decrease of electrical conductivity at the later stage of doping. The best electrical conductivity and power factor are obtained to be 42.3 S·cm-1 and 33.9 μW·mK-2, respectively, in the doped PTB7-Th film at room temperature. The power factor is further improved to 38.3 μW·mK-2 at 75℃. This work may provide meaningful experience for development of D-A type thermoelectric copolymers and may further improve the doping efficiency.
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰) Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping 2022 Chin. Phys. B 31 028507
[1] Su X L, Wei P, Li H, Liu W, Yan Y G, Li P, Su C Q, Xie C J, Zhao W Y, Zhai P C, Zhang Q J, Tang X F and Uher C 2017 Adv. Mater.29 1602013 [2] Pourkiaei S M, Ahmadi M H, Sadeghzadeh M, Moosavi S, Pourfayaz F, Chen L G, Pour Y M A and Kumar R 2019 Energy186 115849 [3] Li D L, Gong Y N, Chen Y X, Lin J M, Khan Q, Zhang Y P, Li Y, Zhang H and Xie H P 2020 Nano-Micro Lett.12 36 [4] Xia X G, Zhang Q, Zhou W B, Xiao Z J, Xi W, Wang Y C and Zhou W Y 2021 Chin. Phys. B30 078801 [5] Xu S D, Shi X L, Dargusch M, Di C A, Zou J and Chen Z G 2021 Prog. Mater. Sci.121 100840 [6] Deng L and Chen G M 2021 Nano Energy80 105448 [7] Chen G M, Xu W and Zhu D B 2017 J. Mater. Chem. C5 4350 [8] Prunet G, Pawula F, Fleury G, Cloutet E, Robinson A J, Hadziioannou G and Pakdel A 2021 Mater. Today Phys.18 100402 [9] Wang L M, Zhang Z M, Liu Y C, Wang B R, Fang L, Qiu J J, Zhang K and Wang S R 2018 Nat. Commun.9 3817 [10] Wang H, Ail U, Gabrielsson R, Berggren M and Crispin X 2015 Adv. Energy Mater.5 1500044 [11] Ansari M A, Mohiuddin S, Kandemirli F and Malik M I 2018 RSC Advances8 8319 [12] Xiao S Q, Zhang Q Q and You W 2017 Adv. Mater.29 1601391 [13] Liu Y, Ogawa K and Schanze K S 2009 J. Photoch. Photobiol. C10 173 [14] Lu K and Liu Y Q 2010 Curr. Org. Chem.14 2017 [15] Li J, Wang H Y, Li Y, Zhang Q Y and Jia Y 2016 Acta Phys. Sin.65 103101 (in Chinese) [16] Joo Y, Huang L F, Eedugurala N, London A E, Kumar A, Wong B M, Boudouris B W and Azoulay J D 2018 Macromolecules51 3886 [17] Li B Z, Li X X, Yang F, Chen Y J, Mao X H, Wan S X, Xin H, Yan S T, Wang M L, Gao C M and Wang L 2021 ACS Appl. Energy Mater.4 4662 [18] Li H, Song J, Xiao J, Wu L L, Katz H E and Chen L D 2020 Adv. Funct. Mater.30 2004378 [19] Lee J, Kim J, Nguyen T L, Kim M, Park J, Lee Y, Hwang S, Kwon Y W, Kwak J and Woo H Y 2018 Macromolecules51 3360 [20] Beaujuge P M, Amb C M and Reynolds J R 2010 Accounts Chem. Res.43 1396 [21] Li Y F and Zou Y P 2008 Adv. Mater.20 2952 [22] Huo L J, Zhang S Q, Guo X, Xu F, Li Y F and Hou J H 2011 Angew. Chem. Int. Ed.50 9697 [23] Gao J H, Wang W, Zhang S J, Xiao S Q, Zhan C, Yang M Y, Lu X H and You W 2018 J. Mater. Chem. A6 179 [24] Lu L Y and Yu L P 2014 Adv. Mater.26 4413 [25] Lai C H, Li J J, Xiang X Z, Wang L and Liu D Q 2018 Poly. Composit.39 126 [26] Fernandes M R, Garcia J R, Schultz M S and Nart F C 2005 Thin Solid Films474 279 [27] Bubnova O and Crispin X 2012 Energy Environ. Sci.5 9345 [28] Kroon R, Mengistie D A, Kiefer D, Hynynen J, Ryan J D, Yu L Y and Müller C 2016 Chem. Soc. Rev.45 6147 [29] Zhang Q, Sun Y M, Xu W and Zhu D B 2014 Adv. Mater.26 6829 [30] Yamamoto J and Furukawa Y 2015 J. Phys. Chem. B119 4788 [31] Liu C, Yi C, Wang K, Yang Y L, Bhatta R S, Tsige M, Xiao S Y and Gong X 2015 ACS Appl. Mater. Interfaces7 4928 [32] Mai C K, Schlitz R A, Su G M, Spitzer D, Wang X, Fronk S L, Cahill D G, Chabinyc M L and Bazan G C 2014 J. Am. Chem. Soc.136 13478 [33] Shi K, Zhang F J, Di C A, Yan T W, Zou Y, Zhou X, Zhu D B, Wang J Y and Pei J 2015 J. Am. Chem. Soc.137 6979 [34] Furukawa Y, Akiyama K, Enokida I and Yamamoto J 2016 Vib. Spectrosc.85 29 [35] Hu Y J, Liu X F, Jiang F X, Zhou W Q, Liu C C, Duan X M and Xu J K 2017 J. Phys. Chem. B121 9281 [36] Jung I H, Hong C T, Lee U H, Kang Y H, Jang K S and Cho S Y 2017 Sci. Rep.7 44704 [37] Scholes D T, Yee P Y, Lindemuth J R, Kang H, Onorato J, Ghosh R, Luscombe C K, Spano F C, Tolbert S H and Schwartz B J 2017 Adv. Funct. Mater.27 1702654 [38] Enengl C, Enengl S, Pluczyk S, Havlicek M, Lapkowski M, Neugebauer H and Ehrenfreund E 2016 ChemPhysChem17 3836 [39] Fukuda T, Toda A, Takahira K, Kuzuhara D and Yoshimoto N 2017 Org. Electron.48 96 [40] Noh J, Jeong S and Lee J Y 2016 Nat. Commun.7 12374 [41] Grey J, Thomas A and Gao J 2015 SPIE Nanoscience + Engineering, August 20, 2015, San Diego, California, USA, p. 95490V [42] Razzell-Hollis J, Tsoi W C and Kim J S 2013 J. Mater. Chem. C1 6235 [43] Razzell-Hollis J, Wade J, Tsoi W C, Soon Y, Durrant J and Kim J S 2014 J. Mater. Chem. A2 20189 [44] Kim T Y, Kim J E and Suh K S 2006 Poly. Inter.55 80 [45] Heon K S, Heo S, Ihn S G, Yun S, Hwan P J, Chung Y, Lee E, Park G and Yun D J 2014 Appl. Phys. Lett.104 243303 [46] Sabbatini L, Malitesta C, De G E, Losito I, Torsi L and Zambonin P G 1999 J. Electron Spectrosc. Relat. Phenom.100 35 [47] Kettle J, Ding Z, Horie M and Smith G C 2016 Org. Electron.39 222 [48] Jeong J, Seo J, Nam S, Han H, Kim H, Anthopoulos T D, Bradley D D and Kim Y 2016 Adv. Sci.3 1500269 [49] Bakshi A K and Ladik J 1988 Solid State Commun.65 1203 [50] Das M and Ramasesha S 2006 J. Chem. Sci.118 67 [51] Darlatt E, Muhsin B, Roesch R, Lupulescu C, Roth F, Kolbe M, Gottwald A, Hoppe H and Richter M 2016 Nanotechnology27 324005 [52] Prasad K S, Rao A, Chauhan N S, Bhardwaj R, Vishwakarma A and Tyagi K 2018 Appl. Phys. A124 98 [53] Liu J, Garman M P, Dong J J, Van D Z B, Qiu L, Portale G, Hummelen J C and Koster L J A 2019 ACS Appl. Energy Mater.2 6664
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.