Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 128501    DOI: 10.1088/1674-1056/abff2e
RAPID COMMUNICATION Prev   Next  

A double quantum dot defined by top gates in a single crystalline InSb nanosheet

Yuanjie Chen(陈元杰)1, Shaoyun Huang(黄少云)1, Jingwei Mu(慕经纬)1, Dong Pan(潘东)2,3, Jianhua Zhao(赵建华)2,3, and Hong-Qi Xu(徐洪起)1,3,†
1 Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China;
2 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  We report on the transport study of a double quantum dot (DQD) device made from a freestanding, single crystalline InSb nanosheet. The freestanding nanosheet is grown by molecular beam epitaxy and the DQD is defined by the top gate technique. Through the transport measurements, we demonstrate how a single quantum dot (QD) and a DQD can be defined in an InSb nanosheet by tuning voltages applied to the top gates. We also measure the charge stability diagrams of the DQD and show that the charge states and the inter-dot coupling between the two individual QDs in the DQD can be efficiently regulated by the top gates. Numerical simulations for the potential profile and charge density distribution in the DQD have been performed and the results support the experimental findings and provide a better understanding of fabrication and transport characteristics of the DQD in the InSb nanosheet. The achieved DQD in the two-dimensional InSb nanosheet possesses pronounced benefits in lateral scaling and can thus serve as a new building block for the developments of quantum computation and quantum simulation technologies.
Keywords:  two-dimensional materials      InSb nanosheet      quantum dot  
Received:  12 April 2021      Revised:  02 May 2021      Accepted manuscript online:  08 May 2021
PACS:  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  73.63.Kv (Quantum dots)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0303304, 2016YFA0300601, 2017YFA0204901, and 2016YFA0300802), the National Natural Science Foundation of China (Grant Nos. 91221202, 91421303, 11874071, 11974030, and 61974138), the Beijing Academy of Quantum Information Sciences (Grant No. Y18G22), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0303060001), and the Beijing Natural Science Foundation, China (Grant Nos. 1202010 and 1192017). DP also acknowledges the support from Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2017156).
Corresponding Authors:  Hong-Qi Xu     E-mail:  hqxu@pku.edu.cn

Cite this article: 

Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起) A double quantum dot defined by top gates in a single crystalline InSb nanosheet 2021 Chin. Phys. B 30 128501

[1] Nadj-Perge S, Frolov S M, Bakkers E P A M and Kouwenhoven L P 2010 Nature 468 1084
[2] Nadj-Perge S, Pribiag V S, Van den Berg, J W G, Zuo K, Plissard S R, Bakkers E P A M, Frolov S M and Kouwenhoven L P 2012 Phys. Rev. Lett. 108 166801
[3] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[4] Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2019 Natl. Sci. Rev. 6 32
[5] Georgescu L M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[6] Hensgens T, Fujita T, Janssen L, Li X, Van Diepen C J, Reichl C, Wegscheider W, Sarma S D and Vandersypen L M K 2017 Nature 548 70
[7] Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K and Alicea J 2016 Phys. Rev. X 6 031016
[8] Gharavi K, Hoving D and Baugh J 2016 Phys. Rev. B 94 155417
[9] Malciu C, Mazza L and Mora C 2018 Phys. Rev. B 98 165426
[10] Zhou Y F, Hou Z and Sun Q F 2019 Phys. Rev. B 99 195137
[11] Kulesh I, Ke C T, Thomas C, Kaewal S, Moehle C M, Metti S, Kallaher R, Gardner G C, Manfra M J and Goswami S 2020 Phys. Rev. Appl. 13 041003
[12] Yi W, Kiselev A A, Thorp J, Noah R, Nguyen B M, Bui S, Rajavel R D, Hussain T, Gyure M F, Kratz P, Qian Q, Manfra M J, Pribiag V S, Kouwenhoven L P, Marcus C M and Sokolich M 2015 Appl. Phys. Lett. 106 142103
[13] Uddin M M, Liu H W, Yang K F, Nagase K, Sekine K, Gaspe C K, Mishima T D, Santos M B and Hirayama Y 2013 Appl. Phys. Lett. 103 123502
[14] Orr J M S, Buckle P D, Fearn M, Wilding P J, Bartlett C J, Emeny M T, Buckle L and Ashley T 2006 Semicond. Sci. Technol. 21 1408
[15] Orr J M S, Buckle P D, Fearn M, Storey C J, Buckle L and Ashley T 2009 New J. Phys. 9 261
[16] Qu F, Veen J V, de Vries F K, Beukman A J A, Wimmer M, Yi W, Kiselev A A, Nguyen B M, Sokolich M, Manfra M J, Nichele F, Marcus C M and Kouwenhoven L P 2016 Nano Lett. 16 7509
[17] Masuda T, Sekine K, Nagase K, Wickramasinghe K S, Mishima T D, Santos M B and Hirayama Y 2018 Appl. Phys. Lett. 112 192103
[18] Pan D, Fan D X, Kang N, Zhi J H, Yu X Z, Xu H Q and Zhao J H 2016 Nano Lett. 16 834
[19] Xue J, Chen Y, Pan D, Wang J Y, Zhao J, Huang S and Xu H Q 2019 Appl. Phys. Lett. 114 023108
[20] Kang N, Fan D, Zhi J, Pan D, Li S, Wang C, Guo J, Zhao J H and Xu H Q 2019 Nano Lett. 19 561
[21] Chen Y, Huang S, Pan D, Xue J, Zhang L, Zhao J and Xu H Q 2021 npj 2D Mater. Appl. 5 3
[22] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[23] Shulman M D, Dial O E, Harvey S P, Bluhm H, Umansky V and Yacoby A 2012 Science 336 202
[24] Uddin M M, Liu H W, Yang K F, Nagase K, Mishima T D, Santos M B and Hirayama Y 2012 Appl. Phys. Lett. 101 233503
[25] Fan D, Kang N, Ghalamestani S G, Dick K A and Xu H Q 2016 Nanotechnology 27 275204
[26] Pisoni R, Lei Z, Back P, Eich M, Overweg H, Lee Y, Watanabe K, Taniguchi T, Ihn T and Ensslin K 2018 Appl. Phys. Lett. 112 123101
[27] Wang K, De Greve K, Jauregui L A, Sushko A, High A, Zhou Y, Scuri G, Taniguchi T, Watanabe K and Lukin M D 2018 Nat. Nanotechnol. 13 128
[28] Sun J, Larsson M, Maximov I, Hardtdegen H and Xu H Q 2009 Appl. Phys. Lett. 94 042114
[29] Tarucha S, Austing D G, Honda T, van der Hage R J and Kouwenhoven L P 1996 Phys. Rev. Lett. 77 3613
[30] Nagaraja S, Matahne P, Thean V Y, Leburton J P, Kim Y H and Martin R M 1997 Phys. Rev. B 56 15752
[31] Larsson M, Hardtdegen H, Nilsson H A and Xu H Q 2009 Appl. Phys. Lett. 95 192112
[32] Hofmann A, Maisi V F, Gold C, Krähenmann T, Rössler C, Basset J, Märki P, Reichl C, Wegscheider W, Ensslin K and Inn T 2016 Phys. Rev. Lett. 117 206803
[33] Song X X, Liu D, Mosallanejad V, You J, Han T Y, Chen D T, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2015 Nanoscale 7 16867
[34] van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
[35] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen M K 2007 Rev. Mod. Phys. 79 1217
[36] Zajac D M, Hazard T M, Mi X, Nielsen E and Petta J R 2016 Phys. Rev. Appl. 6 054013
[37] Hamer M, Tóvári E, Zhu M, Thompson M D, Mayorov A, Prance J, Lee Y, Haley R P, Kudrynskyi Z R, Patanè A, Terry D, Kovalyuk Z D, Ensslin K, Kretinin A V, Geim A and Gorbachev R 2018 Nano Lett. 18 3950
[38] Tang T W, O'Regan T and Wu B 2004 J. Appl. Phys. 95 7990
[39] Pino R 1998 Phys. Rev. B 58 4644
[1] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[2] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[3] Nonequilibrium free energy and information flow of a double quantum-dot system with Coulomb coupling
Zhiyuan Lin(林智远), Tong Fu(付彤), Juying Xiao(肖菊英), Shanhe Su(苏山河), Jincan Chen(陈金灿), and Yanchao Zhang(张艳超). Chin. Phys. B, 2021, 30(8): 080501.
[4] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[5] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[6] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[7] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[8] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[9] Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback
Zai-Fu Jiang(蒋再富), Zheng-Mao Wu(吴正茂), Wen-Yan Yang(杨文艳), Chun-Xia Hu(胡春霞), Yan-Hong Jin(靳艳红), Zhen-Zhen Xiao(肖珍珍), and Guang-Qiong Xia(夏光琼). Chin. Phys. B, 2021, 30(5): 050504.
[10] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[11] Electron transfer properties of double quantum dot system in a fluctuating environment
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠). Chin. Phys. B, 2021, 30(4): 040307.
[12] Micro-scale photon source in a hybrid cQED system
Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2021, 30(4): 048507.
[13] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
[14] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[15] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
No Suggested Reading articles found!