Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 080305    DOI: 10.1088/1674-1056/abfccb
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform

Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健)
School of Physics, Beihang University, Beijing 100191, China
Abstract  Stimulated Raman adiabatic passage (STIRAP) is an important technique to manipulate quantum states in quantum simulation and quantum computation. The transformation fidelity is limited in reality due to experimental imperfections. After systematically calculating the influence of dissipation caused by thermal fluctuations and instantaneous decay of the intermediate state, we find optimized control pulses of Rydberg atom in optical tweezer to increase the STIRAP fidelity via optimal control method. All constraints of currently available control lasers have been taken into account. The transition error can be further depressed when control lasers with shorter rise time and accordingly proper total evolution time are applied. Finally, the robustness of the control pulses with respect to random deviations between the theoretical pulse shape and the implemented ones is also enhanced by additional rounds of optimizations based on ensemble averaged fidelity.
Keywords:  STIRAP      dissipation      optimal control      Rydberg atom  
Received:  03 February 2021      Revised:  15 April 2021      Accepted manuscript online:  29 April 2021
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  42.50.Dv (Quantum state engineering and measurements)  
  03.67.-a (Quantum information)  
Fund: Project supported by the Natonal Natural Science Foundation of China (Grant No. 11904018). This research was supported by the high performance computing (HPC) resources at Beihang University and the college students' innovation and entrepreneurship training program.
Corresponding Authors:  Jian Cui     E-mail:  jiancui@buaa.edu.cn

Cite this article: 

Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健) Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform 2021 Chin. Phys. B 30 080305

[1] Nielsen M A and Chuang I L 2011 Quantum Computation and Quantum Information: 10th Anniversary Edition, (Cambridge University Press)
[2] Kokail C, Maier C, van Bijnen R, Brydges T, Joshi M K, Jurcevic P, Muschik C A, Silvi P, Blatt R, Roos C F and Zoller P 2019 Nature 569 355
[3] Vitanov N, Fleischhauer M, Shore B and Bergmann K 2001 Coherent manipulation of atoms molecules by sequential laser pulses (Academic Press) pp. 55-190
[4] Brune M 2004 Course 3 - cavity quantum electrodynamics, in Quantum Entanglement and Information Processing, Les Houches, Vol. 79, edited by Estéve D, Raimond J M and Dalibard J (Elsevier) pp. 161-185
[5] Gaubatz U, Rudecki P, Schiemann S and Bergmann K 1990 J. Chem. Phys. 92 5363
[6] Marte P, Zoller P and Hall J L 1991 Phys. Rev. A 44 R4118
[7] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[8] Vitanov N V, Rangelov A A, Shore B W and Bergmann K 2017 Rev. Mod. Phys. 89 015006
[9] Bergmann K, Vitanov N V and Shore B W 2015 J. Chem. Phys. 142 170901
[10] Bergmann K, Nägerl H C, Panda C, et al. 2019 J. Phys. B: Atom. Mol. Opt. Phys. 52 202001
[11] Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martínez-Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001
[12] Chen X, Lizuain I, Ruschhaupt A, Guéry-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003
[13] Ibáñez S, Chen X, Torrontegui E, Muga J G and Ruschhaupt A 2012 Phys. Rev. Lett. 109 100403
[14] Chen X, Torrontegui E and Muga J G 2011 Phys. Rev. A 83 062116
[15] Berry M V 2009 J. Phys. A: Math. Theor. 42 365303
[16] Baksic A, Ribeiro H and Clerk A A 2016 Phys. Rev. Lett. 116 230503
[17] Zhou B B, Baksic A, Ribeiro H, Yale C G, Heremans F J, Jerger P C, Auer A, Burkard G, Clerk A A and Awschalom D D 2017 Nat. Phys. 13 330
[18] Du Y X, Liang Z T, Li Y C, Yue X X, Lv Q X, Huang W, Chen X, Yan H and Zhu S L 2016 Nat. Commun. 7 12479
[19] Kölbl J, Barfuss A, Kasperczyk M S, Thiel L, Clerk A A, Ribeiro H and Maletinsky P 2019 Phys. Rev. Lett. 122 090502
[20] Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T and Glaser S J 2005 Journal of Magnetic Resonance 172 296
[21] Scheuer J, Kong X, Said R S, Chen J, Kurz A, Marseglia L, Du J, Hemmer P R, Montangero S, Calarco T, Naydenov B and Jelezko F 2014 New J. Phys. 16 093022
[22] Dolde F, Bergholm V, Wang Y, Jakobi I, Naydenov B, Pezzagna S, Meijer J, Jelezko F, Neumann P, Schulte-Herbrüggen T, Biamonte J and Wrachtrup J 2014 Nat. Commun. 5 3371
[23] Frank F, Unden T, Zoller J, Said R S, Calarco T, Montangero S, Naydenov B and Jelezko F 2017 npj Quantum Information 3 48
[24] Ai M Z, Li S, Hou Z, He R, Qian Z H, Xue Z Y, Cui J M, Huang Y F, Li C F and Guo G C 2020 Phys. Rev. Applied 14 054062
[25] Choi T, Debnath S, Manning T A, Figgatt C, Gong Z X, Duan L M and Monroe C 2014 Phys. Rev. Lett. 112 190502
[26] Rosi S, Bernard A, Fabbri N, Fallani L, Fort C and Inguscio M 2013 Phys. Rev. A 88 021601
[27] van Frank S, Bonneau M, Schmiedmayer J, Hild S, Gross C, Cheneau M, Bloch I, Pichler T, Negretti A, Calarco T and Montangero S 2016 Sci. Rep. 6 34187
[28] Omran A, Levine H, Keesling A, et al., 2019 Science 365 570
[29] Han Z, Dong Y, Liu B, Yang X, Song S, Qiu L, Li D, Chu J, Zheng W, Xu J, Huang T, Wang Z, Yu X, Tan X, Lan D, Yung M H and Yu Y 2020 arXiv: 2004.10364 [quant-ph]
[30] de Léséleuc S, Barredo D, Lienhard V, Browaeys A and Lahaye T 2018 Phys. Rev. A 97 053803
[31] Rach N, Müller M M, Calarco T and Montangero S 2015 Phys. Rev. A 92 062343
[32] Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M and LukinMD, 2016 Science 54 1024
[33] Barredo D, Léséleuc S d, Lienhard V, Lahaye T and Browaeys A 2016 Science 354 1021
[34] Barredo D, Lienhard V, de Léséleuc S, Lahaye T and Browaeys A 2018 Nature 561 79
[35] Miroshnychenko Y, Gaëtan A, Evellin C, Grangier P, Comparat D, Pillet P, Wilk T and Browaeys A 2010 Phys. Rev. A 82 013405
[36] Reetz-Lamour M, Deiglmayr J, Amthor T and Weidemüller M 2008 New J. Physics 10 045026
[37] Johnson T A, Urban E, Henage T, Isenhower L, Yavuz D D, Walker T G and Saffman M 2008 Phys. Rev. Lett. 100 113003
[38] Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A and Grangier P 2009 Nat. Phys. 5 115
[39] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G and Saffman M 2009 Nat. Phys. 5 110
[40] de Léséleuc S 2018 Quantum simulation of spin models with assembled arrays of Rydberg atoms (Ph.D. thesis)
[41] Gujarati T P 2018 Phys. Rev. A 98 062326
[42] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2007 Numerical Recipes, 3rd ed. (Cambridge University Press)
[43] Coppola A and Stewart B M 2014 lbfgs: Efficient l-bfgs and owl-qn optimization in r (2014), software
[44] Doria P, Calarco T and Montangero S 2011 Phys. Rev. Lett. 106 190501
[45] Caneva T, Calarco T and Montangero S 2011 Phys. Rev. A 84 022326
[1] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[2] High-precision three-dimensional Rydberg atom localization in a four-level atomic system
Hengfei Zhang(张恒飞), Jinpeng Yuan(元晋鹏), Lirong Wang(汪丽蓉), Liantuan Xiao(肖连团), and Suo-tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(5): 053202.
[3] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[4] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[5] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[6] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[7] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[8] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[9] Damping of displaced chaotic light field in amplitude dissipation channel
Ke Zhang(张科), Lan-Lan Li(李兰兰), and Hong-Yi Fan(范洪义)†. Chin. Phys. B, 2020, 29(10): 100302.
[10] Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2020, 29(1): 013201.
[11] Tunable multistability and nonuniform phases in a dimerized two-dimensional Rydberg lattice
Han-Xiao Zhang(张焓笑), Chu-Hui Fan(范楚辉), Cui-Li Cui(崔淬砺), Jin-Hui Wu(吴金辉). Chin. Phys. B, 2020, 29(1): 013204.
[12] Dissipative generation for steady-state entanglement of two transmons in circuit QED
Shuang He(何爽), Dan Liu(刘丹), Ming-Hao Li(李明浩). Chin. Phys. B, 2019, 28(8): 080303.
[13] Second order conformal multi-symplectic method for the damped Korteweg-de Vries equation
Feng Guo(郭峰). Chin. Phys. B, 2019, 28(5): 050201.
[14] Properties of collective Rabi oscillations with two Rydberg atoms
Dan-Dan Ma(马丹丹), Ke-Ye Zhang(张可烨), Jing Qian(钱静). Chin. Phys. B, 2019, 28(1): 013202.
[15] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[1] FANG YU-DE, REN ZHAO-XING, QIU LI-JIAN, ZHANG JIAN-DE. THE PRODUCTION AND CHARACTERISTICS OF THE SLOSHING ELECTRONS IN A MAGNETIC MIRROR[J]. Acta Phys. Sin. (Overseas Edition), 1993, 2(12): 907 -916 .
[2] CHEN ZONG-YUN, HUANG NIAN-NING. COMPLETENESS OF THE JOST SOLUTIONS IN THE CASE OF THE NLS+ EQUATION WITH NONVANISHING BOUNDARY CONDITION[J]. Acta Phys. Sin. (Overseas Edition), 1994, 3(5): 321 -327 .
[3] Zhang Xiao-Peng, Guo Jing-Ru, Wang Ting-Ting, Pei Lin-Sen, Chen Cong-Xiang, Chen Yang. Laser spectroscopy of jet-cooled CuF in visible region[J]. Chin. Phys., 2003, 12(8): 851 -855 .
[4] Zhou Bo, Wu Shao-Quan, Sun Wei-Li, Zhou Xiao-Lin. The persistent current in an Aharonov-Bohm ring with a side-coupled quantum dot[J]. Chin. Phys., 2004, 13(2): 225 -228 .
[5] Gong Jian, Liang Xi-Xia, Ban Shi-Liang. Resonant tunnelling in parabolic quantum well structures under a uniform transverse magnetic field[J]. Chin. Phys., 2005, 14(1): 201 -207 .
[6] Jin Xing-Ri, Zhang Ying-Qiao, Jin Zhe, Zhang Shou. Generation of the nonlocal quantum entanglement of three three-level particles by local operations[J]. Chin. Phys., 2005, 14(10): 1936 -1941 .
[7] Dou Chun-Xia, Zhang Shu-Qing. H tracking control of coupled spatiotemporal chaos with parametric uncertainties based on fuzzy observers      [J]. Chin. Phys., 2005, 14(5): 902 -907 .
[8] Lu Jun-Guo. Another anticontrol method of chaos in the sense of Devaney from a Takagi-Sugeno fuzzy system via the overflow nonlinearity[J]. Chin. Phys., 2005, 14(6): 1082 -1087 .
[9] Luo Xiao-Sen, Lu Jian, Song Chun-Yuan, Liu Ying, Ni Xiao-Wu. Fluorescence spectrum characteristic of ethanol--water excimer and mechanism of resonance energy transfer[J]. Chin. Phys., 2007, 16(5): 1300 -1306 .
[10] Qi Wei, Zhang Yan, Wang Ying-Hai. Controlling a time-delay system using multiple delay feedback control[J]. Chin. Phys., 2007, 16(8): 2259 -2263 .