Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 076102    DOI: 10.1088/1674-1056/abf113

Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids

W J Jiang(江文杰) and M Z Li(李茂枝)
Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
Abstract  The structure-dynamics correlations in a nonlocal manner were investigated in CuZr metallic glass-forming liquids via classical molecular dynamics simulations. A spatial coarse-graining approach was employed to incorporate the nonlocal structural information of given structural order parameters in the structure-dynamics relationship. It is found that the correlation between structure order parameters and dynamics increases with increasing coarse-graining length and has a characteristic length scale. Moreover, the characteristic correlation length exhibits a non-monotonic temperature evolution as temperature approaches glass transition temperature, which is not sensitive to the considered structure order parameters. Our results unveil a striking change in the structure-dynamics correlation, which involves no fitting theoretical interpretation. These findings provide new insight into the structure-dynamics correlation in glass transition.
Keywords:  metallic glass-forming liquid      structure-dynamics correlation      molecular dynamics simulation  
Received:  09 February 2021      Revised:  16 March 2021      Accepted manuscript online:  23 March 2021
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys) (Metallic glasses)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52031016 and 51631003).
Corresponding Authors:  M Z Li     E-mail:

Cite this article: 

W J Jiang(江文杰) and M Z Li(李茂枝) Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids 2021 Chin. Phys. B 30 076102

[1] Anderson P W 1995 Science 267 1615
[2] Debenedetti P G and Stillinger F H 2001 Nature 410 259
[3] Berthier L and Biroli G 2011 Rev. Mod. Phys. 83 587
[4] Ediger M D 2000 Rev. Phys. Chem. 51 99
[5] Kob W, Donati C, Plimpton S J, Poole P H and Glotzer S C 1997 Phys. Rev. Lett. 79 2827
[6] Candelier R, Widmer-Cooper A, Kummerfeld J K, Dauchot O, Biroli G, Harrowell P and Reichman D R 2010 Phys. Rev. Lett. 105 135702
[7] Dyre J C 2006 Rev. Mod. Phys. 78 953
[8] Cheng Y Q and Ma E 2011 Prog. Mater. Sci. 56 379
[9] Royall C P and Williams S R 2015 Phys. Rep. 560 1
[10] Frank F C 1952 Proc. R. Soc. Lond. A 215 43
[11] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784
[12] Sheng H W, Luo W K, Alamgir F M, Bai J M and Ma E 2006 Nature 439 419
[13] Hirata A, Guan P F, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T and Chen M W 2011 Nat. Mater. 10 28
[14] Leocmach M and Tanaka H 2012 Nat. Commun. 3 974
[15] Peng H L, Li M Z, Wang W H, Wang C Z and Ho K M 2010 Appl. Phys. Lett. 96 021901
[16] Kawasaki T, Araki T and Tanaka H 2007 Phys. Rev. Lett. 99 215701
[17] Li M Z, Wang C Z, Hao SG, Kramer M J and Ho K M 2009 Phys. Rev B 80 184201
[18] Hao S G, Wang C Z, Li M Z, Napolitano R E and Ho K M 2011 Phys. Rev. B 84 064203
[19] Wu Z W, Li M Z, Wang W H and Liu K X 2013 Phys. Rev. B 88 054202
[20] Soklaski R, Nussinov, Markow Z, Kelton K F and Yang L 2013 Phys. Rev. B 87 184203
[21] Wu Z W, Li F X, Huo C W, Li M Z, Wang W H and Liu K X 2016 Sci. Rep. 6 35967
[22] Li F X and Li M Z 2017 J. Appl. Phys. 122 225103
[23] Wu Z W, Kob W, Wang W H and Xu L M 2018 Nat. Commun. 9 5334
[24] Desgranges C and Delhommelle 2018 Phys. Rev. Lett. 120 115701
[25] Wu Z W and Wang W H 2020 Acta Phys. Sin. 69 066101 (in Chinese)
[26] Hocky G M, Coslovich D, Ikeda A and Reichman D R 2014 Phys. Rev. Lett. 113 157801
[27] Tong H and Tanaka H 2019 Nat. Commun. 10 5596
[28] Plimpton S 1995 J. Comput. Phys. 117 1
[29] Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Yagodin D and Popel P 2009 Philos. Mag. 89 967
[30] Widmer-Cooper A, Harrowell P and Fynewever H 2004 Phys. Rev. Lett. 93 135701
[31] Sammut C and Webb G I 2010 Encyclopedia Machine Learning (Boston: Springer)
[32] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503
[33] Hu Y C, Li F X, Li M Z, Bai H Y and Wang W H 2015 Nat. Commun. 6 8310
[34] Li M Z, Peng H L, Hu Y C, Li F X, Zhang H P and Wang W H 2017 Chin. Phys. B 26 016104
[35] Kob W, Roldán-Vargas S and Berthier L 2012 Nat. Phys. 8 164
[36] Stevenson J D, Schmalian J and Wolynes P G 2006 Nat. Phys. 2 268
[1] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[2] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[3] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[4] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[5] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[6] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[7] Thermal and mechanical properties and micro-mechanism of SiO2/epoxy nanodielectrics
Tian-Yu Wang(王天宇), Gui-Xin Zhang(张贵新), and Da-Yu Li(李大雨). Chin. Phys. B, 2021, 30(12): 128101.
[8] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[9] Oxidation degree dependent adsorption of ssDNA onto graphene-based surface
Huishu Ma(马慧姝), Jige Chen(陈济舸), Haiping Fang(方海平), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2021, 30(10): 106806.
[10] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[11] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[12] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[13] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[14] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[15] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
No Suggested Reading articles found!