Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 040306    DOI: 10.1088/1674-1056/abe298
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Quantum annealing for semi-supervised learning

Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍)
1 Hisilicon Research, Huawei Technologies Co., Ltd., Shenzhen, China
Abstract  Recent advances in quantum technology have led to the development and the manufacturing of programmable quantum annealers that promise to solve certain combinatorial optimization problems faster than their classical counterparts. Semi-supervised learning is a machine learning technique that makes use of both labeled and unlabeled data for training, which enables a good classifier with only a small amount of labeled data. In this paper, we propose and theoretically analyze a graph-based semi-supervised learning method with the aid of the quantum annealing technique, which efficiently utilizes the quantum resources while maintaining good accuracy. We illustrate two classification examples, suggesting the feasibility of this method even with a small portion (30%) of labeled data involved.
Keywords:  quantum annealing      semi-supervised learning      machine learning  
Received:  14 October 2020      Revised:  23 December 2020      Accepted manuscript online:  03 February 2021
PACS:  03.67.-a (Quantum information)  
  03.67.Lx (Quantum computation architectures and implementations)  
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍) Quantum annealing for semi-supervised learning 2021 Chin. Phys. B 30 040306

1 Michie D, Spiegelhalter D J and Taylor C C 1994 Machine Learning, Neural and Statistical Classification (New Jersey: Ellis Horwood ) pp. 1-6
2 Christopher M B Pattern recognition and machine learning(New York: Springer) pp. 1-4
3 Steane A 1998 Rep. Prog. Phys. 61 117
4 Hirvensalo M 2013 Quantum Computing (Springer Science & Business Media) pp. 49-71
5 Shor P 1994 Proceedings 35th annual symposium on foundations of computer science, IEEE, pp. 124-134
6 Zhang S, Duan Q H, Li T, Fu X Q, Huang H L, Wang X and Bao W S 2020 Chin. Phys. B 29 010308
7 Zheng S B 2005 Chin. Phys. 14 2222
8 Schuld M, Sinayskiy I and Petruccione F 2015 Contemp. Phys. 56 172
9 Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195
11 Rebentrost P, Mohseni M and Lloyd S 2014 Phys. Rev. Lett. 113 130503
12 Lloyd S, Mohseni M and Rebentrost P 2014 Nat. Phys. 10 631
13 Gao X, Zhang Z Y and Duan L M 2019 Sci. Adv. 4 eaat9004
14 Preskill J Quantum 2 79
15 Neukart F, Compostella G, Seidel C, Von Dollen D, Yarkoni S and Parney B 2017 Front. ICT 4 29
16 Babbush R, Love P J and Aspuru-Guzik A 2014 Sci. Rep. 4 6603
17 Chapelle O, Scholkopf B and Zien A 2009 IEEE Trans. Nerual Netw. Learn. Syst. 20 542
19 Zhu X and Goldberg A B 2009 Synth. Lect. Artif. Intell. Mach. Learn. 3 1
20 Zhou X and Belkin M Academic Press Library in Signal Processing, Volume 1: Signal Processing Theory and Machine Learning, Chapter 22 -Semi-Supervised Learning(Amsterdam: Elsevier) pp. 1239-1269
21 Zha Z J, Mei T, Wang J D and Hua X S 2009 J. Vis. Commun. Image Represent. 20 97
22 Roweis S T and Saul L K 2000 Science 290 2323
23 Kambhatla N and Leen T K 1997 Neural Comput. 9 1493
24 Fergus R, Weiss Y and Torralba A Advances in neural information processing systems 22, December 7-10, 2009, Vancouver, British Columbia, Canada, pp. 522-530
25 Liu W, He J and Chang S F The 27th International Conference on Machine Learning, June 21-24, 2010, Haifa, Israel, 2010, pp. 1-8
26 Zhou D, Bousquet O, Lal T N and Schölkopf B Conference and Workshop on Neural Information Processing Systems December 13-18, 2004, Vancouver, British Columbia, Canada, pp. 595-602
27 Kadowaki T and Nishimori H 1998 Phys. Rev. E 58 5355
28 Bunyk P I, Hoskinson E M, Johnson M W, Tolkacheva E, Altomare F, Berkley A J, Harris R, Hilton J P, Lanting T, Przybysz A J and Whittaker J 2014 IEEE Trans. Appl. Supercond. 24 1
29 Boixo S, Albash T, Spedalieri F M, Chancellor N and Lidar D A 2013 Nat. Commun. 4 2067
30 Boixo S, Rønnow T F, Isakov S V, Wang Z, Wecker D, Lidar D A, Martinis J M and Troyer M 2014 Nat. Phys. 10 218
31 Ray P, Chakrabarti B K and Chakrabarti A 1989 Phys. Rev. B 39 11828
32 Van Dam W, Mosca M and Vazirani U In Proceedings 42nd IEEE Symposium on Foundations of Computer Science, October 8-11, 2001, Newport Beach, CA, USA, pp. 279-287
33 Kumar V, Bass G, Tomlin C and Dulny J 2018 Quantum Inf. Process. 17 39
35 Marto\vn àk R, Santoro G E and Tosatti E 2004 Phys. Rev. E 70 057701
36 Tanaka S, Matsuda Y and Togawa N 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), January 13-16, 2020, Beijing, China, pp. 659-666
37 Choi V 2008 Quantum Inf. Process. 7 193
38 Lucas A
39 Amin M H, Andryash E, Rolfe J, Kulchytskyy B and Melko R 2018 Phys. Rev. X 8 021050
40 Hinton G E and Sejnowski T J hinton/absps/pdp7.pdf1986 Parallel distributed processing: Explorations in the microstructure of cognition (Cambridge: MIT Press) 1 282-317
41 Fisher R A 1936 Ann. Eugen. 7 179
42 Kessy A, Lewin A and Strimmer, K 2018 Am. Stat. 72 309
43 Horn D and Gottlieb A 2001 Phys. Rev. Lett. 88 018702
44 Kurihara K, Tanaka S and Miyashita S 2014 arXiv:1408.2035 [quant-ph]
46 Li Z, Liu X, Xu N and Du J 2015 Phys. Rev. Lett. 114 140504
[1] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[2] Restricted Boltzmann machine: Recent advances and mean-field theory*

AD was supported by the Comunidad de Madrid and the Complutense University of Madrid (Spain) through the Atracción de Talento program (Ref. 2019-T1/TIC-13298).

Aurélien Decelle, Cyril Furtlehner. Chin. Phys. B, 2021, 30(4): 00.
[3] Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning
Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东). Chin. Phys. B, 2020, 29(4): 046101.
[4] Machine learning in materials design: Algorithm and application
Zhilong Song(宋志龙), Xiwen Chen(陈曦雯), Fanbin Meng(孟繁斌), Guanjian Cheng(程观剑), Chen Wang(王陈), Zhongti Sun(孙中体), and Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(11): 116103.
[5] Methods and applications of RNA contact prediction
Huiwen Wang(王慧雯) and Yunjie Zhao(赵蕴杰)†. Chin. Phys. B, 2020, 29(10): 108708.
[6] On the time-independent Hamiltonian in real-time and imaginary-time quantum annealing
Jie Sun(孙杰)† and Songfeng Lu(路松峰)‡. Chin. Phys. B, 2020, 29(10): 100303.
[7] Computational prediction of RNA tertiary structures using machine learning methods
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang (王骏), and Jian Zhang(张建)†. Chin. Phys. B, 2020, 29(10): 108704.
[8] Dielectric or plasmonic Mie object at air-liquid interface: The transferred and the traveling momenta of photon
M R C Mahdy, Hamim Mahmud Rivy, Ziaur Rahman Jony, Nabila Binte Alam, Nabila Masud, Golam Dastegir Al Quaderi, Ibraheem Muhammad Moosa, Chowdhury Mofizur Rahman, M Sohel Rahman. Chin. Phys. B, 2020, 29(1): 014211.
[9] Machine learning technique for prediction of magnetocaloric effect in La(Fe, Si/Al)13-based materials
Bo Zhang(张博), Xin-Qi Zheng(郑新奇), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 067503.
[10] Composition design for (PrNd-La–Ce)2Fe14B melt-spun magnets by machine learning technique
Rui Li(李锐), Yao Liu(刘瑶), Shu-Lan Zuo(左淑兰), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(4): 047501.
[11] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[12] Accomplishment and challenge of materials database toward big data
Yibin Xu(徐一斌). Chin. Phys. B, 2018, 27(11): 118901.
[13] Exploring the relationship between fractal features and bacterial essential genes
Yong-Ming Yu(余永明), Li-Cai Yang(杨立才), Qian Zhou(周茜), Lu-Lu Zhao(赵璐璐), Zhi-Ping Liu(刘治平). Chin. Phys. B, 2016, 25(6): 060503.
[2] Shao Fu-qiu, Wang Long, Wu Han-ming, Yao Xin-zi. MAGNETIC FIELD GRADIENT EFFECTS ON ION FLUX BEHAVIORS IN ECR PLASMA SOURCES[J]. Acta Phys. Sin. (Overseas Edition), 1998, 7(9): 688 -694 .
[3] Kong Ling-Jiang, Liu Mu-Ren, Huang Ping-Hua. A study of a main-road cellular automata traffic flow model[J]. Chin. Phys., 2002, 11(7): 678 -683 .
[4] M. Matsumoto, A. Morisako, S. Takei, Ma Yun-Gui, Yang Zheng. Effects of underlayer materials and substrate temperatures on the structural and magnetic properties of Nd2Fe14B films[J]. Chin. Phys., 2004, 13(11): 1969 -1974 .
[5] Wen Lei, Li Shun-Guang, Huang Guo-Song, Hu Li-Li, Jiang Zhong-Hong. Optical transitions and upconversion properties of Er3+-doped chloride tellurite glasses[J]. Chin. Phys., 2004, 13(2): 258 -263 .
[6] Luo Ying, Ma Ben-Kun, Duan Su-Qing, Zhao Xian-Geng, Wang Li-Min. Effects of a donor on the bond property of quantum-dot molecules[J]. Chin. Phys., 2004, 13(6): 942 -947 .
[7] Lin Xue-Chun, Kong Yu-Peng, Zhang Ying, Zhang Jie, Yao Ai-Yun, Bi Yong, Sun Zhi-Pei, Cui Da-Fu, Li Rui-Ning, Wu Ling-An, Xu Zu-Yan. Mid-infrared generation based on a periodically poled LiNbO3 optical parametric oscillator[J]. Chin. Phys., 2004, 13(7): 1042 -1045 .
[8] Fu Shi-Liu, Yin Tao, Chai Fei. Synthesis and characterization of Ca2Sn1-xCexO4 with blue luminescence originating from Ce4+ charge transfer transition[J]. Chin. Phys., 2007, 16(10): 3129 -3133 .
[9] Qian Jun, Xie Ping, Xue Xiao-Guang, Wang Peng-Ye. Modelling of a DNA packaging motor[J]. Chin. Phys. B, 2009, 18(11): 4852 -4864 .
[10] Tang Li. Quantum information procession with fermions based on charge detection[J]. Chin. Phys. B, 2009, 18(12): 5155 -5160 .