Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 120305    DOI: 10.1088/1674-1056/abc0de
RAPID COMMUNICATION Prev   Next  

Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection

Jing-Min Hou(侯净敏)†
School of Physics, Southeast University, Nanjing 211189, China
Abstract  We propose a square optical lattice in which some of neighbor hoppings have a Peierls phase. The Peierls phase makes the lattice have a special band structure and induces the existence of Dirac points in the Brillouin zone, which means that topological semimetals exist in the system. The Dirac points move with the change of the Peierls phase and the Dirac cones are anisotropic for some vales of the Peierls phase. The lattice has a novel hidden symmetry, which is a composite antiunitary symmetry composed of a translation operation, a sublattice exchange, a complex conjugation, and a local U(1) gauge transformation. We prove that the Dirac points are protected by the hidden symmetry and perfectly explain the moving of Dirac points with the change of the Peierls phase based on the hidden symmetry protection.
Keywords:  topological semimetal      optical lattice      hidden symmetry  
Received:  14 July 2020      Revised:  01 January 1900      Accepted manuscript online:  14 October 2020
PACS:  03.75.Ss (Degenerate Fermi gases)  
  02.20.-a (Group theory)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  05.30.Fk (Fermion systems and electron gas)  
Corresponding Authors:  Corresponding author. E-mail: jmhou@seu.edu.cn   

Cite this article: 

Jing-Min Hou(侯净敏) Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection 2020 Chin. Phys. B 29 120305

[1] Hasan M Z and Kane C L Rev. Mod. Phys. 82 3045 DOI: 10.1103/RevModPhys.82.30452010
[2] Qi X L and Zhang S C Rev. Mod. Phys. 83 1057 DOI: 10.1103/RevModPhys.83.10572011
[3] Wan X, Turner A M, Vishwanath A and Savrasov S Y Phys. Rev. B 83 205101 DOI: 10.1103/PhysRevB.83.2051012011
[4] Xu G, Weng H, Wang Z, Dai X and Fang Z Phys. Rev. Lett. 107 186806 DOI: 10.1103/PhysRevLett.107.1868062011
[5] Burkov A A, Hook M D and Balents L Phys. Rev. B 84 235126 DOI: 10.1103/PhysRevB.84.2351262011
[6] Burkov A A and Balents L Phys. Rev. Lett. 107 127205 DOI: 10.1103/PhysRevLett.107.1272052011
[7] Fang C, Gilbert M J, Dai X and Bernevig B A Phys. Rev. Lett. 108 266802 DOI: 10.1103/PhysRevLett.108.2668022012
[8] Zyuzin A A, Wu S and Burkov A A Phys. Rev. 85 165110 DOI: 10.1103/PhysRevB.85.1651102012
[9] Jaksch D and Zoller P Ann. Phys. 315 52 DOI: 10.1016/j.aop.2004.09.0102005
[10] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A and Sen U 2007 Adv. Phys. 56 243 DOI: 10.1080/00018730701223200
[11] Bloch I, Dalibard J and Zwerger W Rev. Mod. Phys. 80 885 DOI: 10.1103/RevModPhys.80.8852008
[12] Cooper N R, Dalibard J and Spielman I B Rev. Mod. Phys. 91 015005 DOI: 10.1103/RevModPhys.91.0150052019
[13] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I Nature 415 39 DOI: 10.1038/415039a2002
[14] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P Phys. Rev. Lett. 81 3108 DOI: 10.1103/PhysRevLett.81.31081998
[15] Hou J M and Ge M L Phys. Rev. A 67 063607 DOI: 10.1103/PhysRevA.67.0636072003
[16] Lin Y J, Compton R L, Jimènez-Garcìa K, Porto J V and Spielman I B Nature 462 628 DOI: 10.1038/nature086092009
[17] Aidelsburger M, Atala M, Nascimb\`ene S, Trotzky S, Chen Y A and Bloch I Phys. Rev. Lett. 107 255301 DOI: 10.1103/PhysRevLett.107.2553012011
[18] Miyake H, Siviloglou G A, Kennedy C J, Burton W C and Ketterle W Phys. Rev. Lett. 111 185302 DOI: 10.1103/PhysRevLett.111.1853022013
[19] Struck J, ölschläger C, Weinberg M, Hauke P, Simonet J, Eckardt A, Lewenstein M, Sengstock K and Windpassinger P Phys. Rev. Lett. 108 225304 DOI: 10.1103/PhysRevLett.108.2253042012
[20] J Struck, Weinberg M, ölschläger C, Windpassinger P, Simonet J, Sengstock K, Höppner R, Hauke P, Eckardt A, Lewenstein M and Mathey L Nat. Phys. 9 738 https://www.nature.com/articles/nphys27502013
[21] Trotzky S, Cheinet P, Fölling S, Feld M, Schnorrberger U, Rey A M, Polkovnikov A, Demler E A, Lukin M D and Bloch I Science 319 295 DOI: 10.1126/science.11508412008
[22] Eckardt A, Hauke P, Soltan-Panahi P, Becker C, Sengstock K and Lewenstein M Europhys. Lett. 89 10010 DOI: 10.1209/0295-5075/89/100102010
[23] Simon J, Bakr W S, Ma R, Tai M E, Preiss P M and Greiner M Nature 472 307 DOI: 10.1038/nature099942011
[24] Greif D, Uehlinger T, Jotzu G, Tarruell L and Esslinger T Science 340 1307 DOI: 10.1126/science.12363622013
[25] Hou J M, Yang W X and Liu X J Phys. Rev. A 79 043621 DOI: 10.1103/PhysRevA.79.0436212009
[26] Lim L K, Smith C M and Hemmerich A Phys. Rev. Lett. 100 130402 DOI: 10.1103/PhysRevLett.100.1304022008
[27] Goldman N, Kubasiak A, Bermudez A, Gaspard P, Lewenstein M and Martin-Delgado M A Phys. Rev. Lett. 103 035301 DOI: 10.1103/PhysRevLett.103.0353012009
[28] Bercioux D, Urban D F, Grabert H and Häusler W Phys. Rev. A 80 063603 DOI: 10.1103/PhysRevA.80.0636032009
[29] Sun K, Liu W V, Hemmerich A and Das Sarma S Nat. Phys. 8 67 DOI: 10.1038/nphys21342012
[30] Hou J M Phys. Rev. Lett. 111 130403 DOI: 10.1103/PhysRevLett.111.1304032013
[31] Goldman N, Anisimovas E, Gerbier F, öhberg P, Spielman I B and Juzeli\=unas G New J. Phys. 15 013025 DOI: 10.1088/1367-2630/15/1/0130252013
[32] Mai X Y, Zhang D W, Li Z and Zhu S L Phys. Rev. A 95 063616 DOI: 10.1103/PhysRevA.95.0636162017
[33] Nielsen H B and Ninomiya M 1981 Nuclear Physics B 185 20 DOI: 10.1016/0550-3213(81)90361-8
[34] Hou J M and Chen W Front. Phys. 13 130301 DOI: 10.1007/s11467-017-0712-82018
[35] Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E and Ketterle W Phys. Rev. Lett. 82 4569 DOI: 10.1103/PhysRevLett.82.45691999
[36] Steinhauer J, Ozeri R, Katz N and Davidson N Phys. Rev. Lett. 88 120407 DOI: 10.1103/PhysRevLett.88.1204072002
[37] Stanescu T D, Galitski V and Das Sarma S Phys. Rev. A 82 013608 DOI: 10.1103/PhysRevA.82.0136082010
[38] Liu X J, Liu X, Wu C and Sinova J Phys. Rev. A 81 033622 DOI: 10.1103/PhysRevA.81.0336222010
[39] Goldman N, Beugnon J and Gerbier F Phys. Rev. Lett. 108 255303 DOI: 10.1103/PhysRevLett.108.2553032012
[1] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[2] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[3] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[4] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
[5] Dynamical properties of ultracold Bose atomic gases in one-dimensional optical lattices created by two schemes
Jiang Zhu(朱江), Cheng-Ling Bian(边成玲), Hong-Chen Wang(王红晨). Chin. Phys. B, 2019, 28(9): 093701.
[6] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[7] Structural, elastic, and electronic properties of topological semimetal WC-type MX family by first-principles calculation
Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2019, 28(7): 077105.
[8] Dynamics of Airy beams in parity-time symmetric optical lattices
Rui-Hong Chen(陈睿弘), Wei-Yi Hong(洪伟毅). Chin. Phys. B, 2019, 28(5): 054202.
[9] Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海). Chin. Phys. B, 2018, 27(4): 044203.
[10] Strontium optical lattice clock at the National Time Service Center
Ye-Bing Wang(王叶兵), Mo-Juan Yin(尹默娟), Jie Ren(任洁), Qin-Fang Xu(徐琴芳), Ben-Quan Lu(卢本全), Jian-Xin Han(韩建新), Yang Guo(郭阳), Hong Chang(常宏). Chin. Phys. B, 2018, 27(2): 023701.
[11] Quench dynamics of ultracold atoms in one-dimensional optical lattices with artificial gauge fields
Xiaoming Cai(蔡小明). Chin. Phys. B, 2017, 26(8): 086701.
[12] Tunable ground-state solitons in spin-orbit coupling Bose-Einstein condensates in the presence of optical lattices
Huafeng Zhang(张华峰), Fang Chen(陈方), Chunchao Yu(郁春潮), Lihui Sun(孙利辉), Dahai Xu(徐大海). Chin. Phys. B, 2017, 26(8): 080304.
[13] Raman sideband cooling of rubidium atoms in optical lattice
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2017, 26(8): 080701.
[14] Bifurcated overtones of one-way localized Fabry–Pérot resonances in parity-time symmetric optical lattices
Fatma Nafaa Gaafer, Yaxi Shen(沈亚西), Yugui Peng(彭玉桂), Aimin Wu(武爱民), Peng Zhang(张鹏), Xuefeng Zhu(祝雪丰). Chin. Phys. B, 2017, 26(7): 074218.
[15] Topological transport in Dirac electronic systems: A concise review
Hua-Ding Song(宋化鼎), Dian Sheng(盛典), An-Qi Wang(王安琦), Jin-Guang Li(李金光), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2017, 26(3): 037301.
No Suggested Reading articles found!