Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017501    DOI: 10.1088/1674-1056/abc0d7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons

Yikun Zhang(张义坤)1,2,3,†, Bingbing Wu(吴兵兵)1,2,3, Dan Guo(郭丹)1,2,3, Jiang Wang(王江)1,2,3, and Zhongming Ren(任忠鸣)1,2,3
1 State Key Laboratory of Advanced Special Steels, Shanghai University, Shanghai 200072, China; 2 Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200072, China; 3 School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Abstract  The magnetic cooling utilizing magneto-caloric effect is recognized as promising energy efficiency and environmentally friendly technology. Here we report a systematical study on the microstructures, magnetic properties and cryogenic magneto-caloric performances of the Gd20Ho20Tm20Cu20Ni20 amorphous ribbons. It is found that the ribbons reveal a second-order phase transition and are accompanied by a table-shaped magneto-caloric effect. The calculated magnetic-entropy-change maximum |∆ S M|, temperature averaged entropy change (i.e., TEC(10)), and refrigerant capacity reach 13.9 J/kgK, 13.84 J/kgK and 740 J/kg with magnetic field change of 0-7 T, respectively, indicating that the present Gd20Ho20Tm20Cu20Ni20 amorphous ribbons are good candidates for magnetic cooling.
Keywords:  microstructure      magneto-caloric effect (MCE)      amorphous ribbons      magnetic properties  
Received:  03 June 2020      Revised:  03 October 2020      Accepted manuscript online:  14 October 2020
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  64.70.pe (Metallic glasses)  
  75.50.Kj (Amorphous and quasicrystalline magnetic materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52071197), the Science and Technology Committee of Shanghai (Grant No. 19ZR1418300), and the Independent Research and Development Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University (Grant No. SKLASS 2019-Z003), and the Science and Technology Commission of Shanghai Municipality (Grant No. 19DZ2270200)
Corresponding Authors:  Corresponding author. E-mail: ykzhang@shu.edu.cn   

Cite this article: 

Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣) Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons 2021 Chin. Phys. B 30 017501

1 Franco V, Blàzquaz J S, Ipus J J, Law J Y, Moreno-Ramìreza L M and Conde A 2018 Prog. Mater. Sci. 93 112
2 Zhang Y K 2019 J. Alloys Compd. 787 1173
3 Li L W and Yan M 2020 J. Alloys Compd. 823 153810
4 Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
5 Sma\"ili A and Chahine R 1997 J. Appl. Phys. 81 824
6 Li L W, Yuan Y, Qi Y, Wang Q and Zhou S Q 2018 Mater. Res. Lett. 6 67
7 Zhang Y K, Guo D, Wu B B, Wang H F, Guan R G, Li X and Ren Z M 2020 J. Alloys Compd. 817 152780
8 Li L, Xu P, Ye S, Li Y, Liu G, Huo D and Yan M 2020 Acta Mater. 194 354
9 Wu B, Zhang Y, Guo D, Wang J and Ren Z 2020 Cera. Int.(in press)
10 Zhang Y K, Li H D, Geng S H, Lu X G, Wilde G 2019 J. Alloys Compd. 770 849
11 Guo D, Zhang Y, Wang Y, Wang J and Ren Z 2020 Chin. Phys. B 29 107502
12 Li L W, Xu C, Yuan Y and Zhou S Q 2018 Mater. Res. Lett. 6 413
13 Wang Y, Guo D, Wu B, Geng S and Zhang Y 2020 J. Magn. Magn. Mater. 498 166179
14 Wang W H 2009 Adv. Mater. 21 4524
15 Li L, Niehaus O, Kersting M, P?ttgen R 2014 Appl. Phys. Lett. 104 092416
16 Banerjee B K 1964 Phys. Lett. 12 16
17 Griffith L D, Mudryk Y, Slaughter J, Pecharsky V K 2018 J. Appl. Phys. 123 034902
18 Zhang Y K, Wilde G 2016 J. Supercond. Nov. Magn. 29 2159
19 Li L W, Namiki T, Huo D X, Qian Z H, Nishimura K 2013 Appl. Phys. Lett. 103 222405
20 Li B, Hu W J, Liu X G, Yang F, Ren W J, Zhao X G, Zhang Z D 2008 Appl. Phys. Lett. 92 242508
21 Zhang Y K, Yang Y, Xu X, Geng S H, Hou L, Li X, Ren Z M and Wilde G 2016 Sci. Rep. 6 34192
22 Dong Q Y, Chen J, Shen J, Sun J R, Shen B G 2011 Appl. Phys. Lett. 99 132504
23 Zou J D, Shen B G and Sun J R 2007 Chin. Phys. 16 1817
24 Lima A L, Gschneidner Jr K A, Pecharsky V K and Pecharsky A O 2003 Phys. Rev. B 68 134409
[1] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[2] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
[3] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
[4] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[7] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[8] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[9] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[10] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[11] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[12] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[13] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[14] Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules
Lijuan Yan(闫丽娟), Jianmei Shao(邵健梅), and Yongqiang Li(李永强). Chin. Phys. B, 2020, 29(12): 125101.
[15] Multi-scale elastoplastic mechanical model and microstructure damage analysis of solid expandable tubular
Hui-Juan Guo(郭慧娟), Ying-Hua Liu(刘应华), Yi-Nao Su(苏义脑), Quan-Li Zhang(张全立), and Guo-Dong Zhan(詹国栋)†. Chin. Phys. B, 2020, 29(10): 104602.
No Suggested Reading articles found!