Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 117303    DOI: 10.1088/1674-1056/abbbe2
Special Issue: SPECIAL TOPIC —Twistronics
TOPICAL REVIEW—Twistronics Prev   Next  

Twistronics in graphene-based van der Waals structures

Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林)
Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  

The electronic properties of van der Waals (vdW) structures can be substantially modified by the moiré superlattice potential, which strongly depends on the twist angle among the compounds. In twisted bilayer graphene (TBG), two low-energy Van Hove singularities (VHSs) move closer with decreasing twist angles and finally become highly non-dispersive flat bands at the magic angle (∼ 1.1°). When the Fermi level lies within the flat bands of the TBG near the magic angle, Coulomb interaction is supposed to exceed the kinetic energy of the electrons, which can drive the system into various strongly correlated phases. Moreover, the strongly correlated states of flat bands are also realized in other graphene-based vdW structures with an interlayer twist. In this article, we mainly review the recent scanning tunneling microscopy (STM) advances on the strongly correlated physics of the magic-angle TBG (MATBG) and the small-angle twisted multilayer graphene. Lastly we will give out a perspective of this field.

Keywords:  twisted bilayer graphene      correlated states      superconductivity  
Received:  21 August 2020      Revised:  02 September 2020      Accepted manuscript online:  28 September 2020
Corresponding Authors:  These authors contributed equally to this work. Corresponding author. E-mail: helin@bnu.edu.cn   

Cite this article: 

Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林) Twistronics in graphene-based van der Waals structures 2020 Chin. Phys. B 29 117303

Fig. 1.  

Abundant physical phenomena in TBG. On the logarithmic axis of twist angle, the blue regions correspond to the commensurate angle, and the red regions correspond to the incommensurate angle. The arrow points out several typical physical phenomena, the angles from small to large correspond to: Aharonov–Bohm oscillations along the triangular network of AB/BA domain walls (θ ∼ 0.1°). Reproduced with permission from Ref. [113]. Copyright 2019, Nature Publishing Group. Topologically protected helical edge states on the domain wall network (θ ∼ 0.245°). Reproduced with permission from Ref. [111]. Copyright 2018, American Physical Society. Strongly correlated phases for the partially filled moiré flat minibands on MATBG systems (θ ∼ 1.1°). Reproduced with permission from Ref. [79]. Copyright 2020, American Physical Society. Reproduced with permission from Ref. [154]. Copyright 2018, National Academy of Sciences. The higher-order topological insulator with topological corner states (θ ∼ 21.78°). Reproduced with permission from Ref. [125]. Copyright 2019, American Physical Society. The emergence of mirrored Dirac cones in graphene quasicrystal (θ ∼ 30°). Reproduced with permission from Ref. [99]. Copyright 2018, American Association for the Advancement of Science. Reproduced with permission from Ref. [100]. Copyright 2018, National Academy of Sciences. Flat bands caused by the electrons confined in a geometrically frustrated network of topologically protected modes (θ ∼ 38.21°). Reproduced with permission from Ref. [148]. Copyright 2019, American Physical Society.

Fig. 2.  

VHSs separation as a function of twist angle θ. Solid colorful circles are the experimental data measured in different TBG from different references. The data are taken from Refs. [32,3540,6772,97]. Error bars in energy represent the peak position change caused by slight doping change. The inset shows the electronic band structure of TBG. Left: The first Brillouin zone of TBG with twist angle θ. K1 and K2 are the Dirac points of top and bottom layers. Middle: Energy dispersion relation of the overlap of the two Dirac cones, giving rise to two VHSs which generate peaks in the DOS. Right: Diagram of the energy dependence of DOS near the Fermi level.

Fig. 3.  

The sample differences of TBG in different references. (a) A schematic diagram of the MATBG band structure and the corresponding DOS showing VHS peaks. The colored arrows point out three typical parameters: the band gap between the flat and the upper dispersive band (Δgap marked by blue), the full-width at half-maximum of the VHSs (FWHM marked by red), the energy separations of two VHSs (ΔEVHS marked by green). (b) VHSs separation ΔEVHS as a function of twist angle θ near MA-TBG. Solid colorful circles are the experimental data measured in different TBG, and the chemical potential is in between the two VHSs. The data are taken from Refs. [35,36,65,6772]. The open stars symbols represent data for the band fully filled or fully unfilled. The data are taken from Refs. [32,37,65,67,68,70,74]. (c) The FWHM of the VHSs as a function of twist angle θ, each of VHS is fully occupied or unoccupied. The data are taken from Refs. [3537,6772]. Solid colorful circles represent the FWHM of conduction VHS. Open colorful circles represent FWHM of valence VHS. (d) and (e) The energy gap Δgap between the flat bands and the higher-energy dispersive bands as a function of twist angle θ. (d) Data from STM experiments. The data are taken from Refs. [67,68]. (e) Data from transport experiments. The data are taken from Refs. [73,7577,81,126,204]. Solid colorful circles represent the gap between the electron flat band and the upper dispersive bands. Open colorful circles represent the gap between the hole flat band and the lower dispersive bands. Error bars in (b)–(e) originate from the slight doping change.

Fig. 4.  

The STS spectra of TBG when one of the flat bands is partially filled. (a) The schematic diagram of the partially filled DOS peak in MATBG. (b) The partially filled flat band splits into four DOS peaks in a non-magic-angle TBG with θ ∼ 1.49°. Reproduced with permission from Ref. [71]. Copyright 2020, American Chemical Society.

Fig. 5.  

Correlated insulator and superconductivity in the MATBG. Top panel: Conductance at the Fermi level as a function of filling factors ν in STM experiments. Grey areas correspond to fully occupied or unoccupied flat bands. Green areas correspond to the CNP (ν = 0). Twist angles include 1.05°,[66] 1.07°,[70] 0.99°,[68] and 1.01°.[67] Bottom panel: Superconducting phase diagrams acquired from the transport measurements. Solid superconducting domes indicate the coexistence of superconductivity and insulating states at ν = ± 2. Twist angles include 1.14°,[90] 1.10°,[84] 1.05°,[80] 1.16°,[80] and 1.27°.[90] Dotted superconducting domes indicate that the superconductivity persists in the absence of the correlated insulators at ν = ± 2. Twist angles include 1.04°,[83] 1.15°,[83] and 1.18°.[82] The data are taken from Refs. [6668,70,80,8284,90].

Fig. 6.  

Spatially resolved conductance maps at the energies of the flat bands (VHSs) in MATBG. (a) Schematic atomic structure of the TBG with a twist angle θ. The AA stacking configurations are marked in the panel, exhibiting the C6 rotational symmetry. (b) The conductance maps at the energies around the VHS peaks show the same features as topographies and maintain the C6 symmetry when the two VHSs are fully filled or empty. (c) The conductance maps at the energies around the VHS peaks show a pronounced anisotropy in each moiré when the Fermi level lies in one of the VHSs, reducing the symmetry from the initial C6 to C2.

Fig. 7.  

Quantized anomalous Hall effect in TBG (θ ∼ 1.15°) at θ = 3. (a) Longitudinal resistance Rxx and Hall resistance Rxy measured at B = 150 mT and T = 1.6 K as a function of carrier density over the entire flat bands. Near the ν = 3, Rxy approaches h / e2 and Rxx reaches a deep minimum, illustrating the quantized anomalous Hall state. (b) Magnetic-field-dependent Rxx and Rxy at ν = 3. The sweep directions are indicated by the arrows, showing an obvious hysteresis. Reproduced with permission from Ref. [76]. Copyright 2020, American Association for the Advancement of Science.

Fig. 8.  

Schematic of the electrical-displacement-field-dependent low energy moiré bands and DOS in the TDBG. The two parabolic dispersive bands are originated from the Bernal-stacked BLG. The two low-energy flat bands are separated from the high-energy dispersing bands by the moiré gaps. The bandwidth of the flat bands W and the band gap Δ at the charge neutral point can be easily tuned via the perpendicular electrical displacement field D. In a specific range of D, the correlated insulating states emerge when the isolated flat band is half filled, exhibiting the spin-polarized ordering.

[1]
Novoselov K S Geim A K Morozov S V Jiang D Zhang Y Dubonos S V Grigorieva I V Firsov A A 2004 Science 306 666 DOI: 10.1126/science.1102896
[2]
Novoselov K S Geim A K Morozov S V Jiang D Katsnelson M I Grigorieva I V Dubonos S V Firsov A A 2005 Nature 438 197 DOI: 10.1038/nature04233
[3]
Zhang Y Tan Y W Stormer H L Kim P 2005 Nature 438 201 DOI: 10.1038/nature04235
[4]
Katsnelson M I Novoselov K S Geim A K 2006 Nat. Phys. 2 620 DOI: 10.1038/nphys384
[5]
Novoselov K S 2011 Rev. Mod. Phys. 83 837 DOI: 10.1103/RevModPhys.83.837
[6]
Geim A K Grigorieva I V 2013 Nature 499 419 DOI: 10.1038/nature12385
[7]
Basov D N Fogler M M Lanzara A Wang F Zhang Y 2014 Rev. Mod. Phys. 86 959 DOI: 10.1103/RevModPhys.86.959
[8]
Novoselov K S Mishchenko A Carvalho A Castro Neto A H 2016 Science 353 aac9439 DOI: 10.1126/science.aac9439
[9]
Yankowitz M Ma Q Jarillo-Herrero P LeRoy B J 2019 Nat. Rev. Phys. 1 112 DOI: 10.1038/s42254-018-0016-0
[10]
Zhou J Cheng S You W Jiang H 2019 Sci. Chin. Phys. Mech. Astron. 62 067811 DOI: 10.1007/s11433-018-9314-2
[11]
Balents L Dean C R Efetov D K Young A F 2020 Nat. Phys. 16 725 DOI: 10.1038/s41567-020-0906-9
[12]
Carr S Fang S Kaxiras E 2020 Nat. Rev. Mater. 5 748 DOI: 10.1038/s41578-020-0214-0
[13]
Landgraf W Shallcross S Türschmann K Weckbecker D Pankratov O 2013 Phys. Rev. B 87 075433 DOI: 10.1103/PhysRevB.87.075433
[14]
Mele E J 2010 Phys. Rev. B 81 161405(R) DOI: 10.1103/PhysRevB.81.161405
[15]
Shallcross S Sharma S Pankratov O 2013 Phys. Rev. B 87 245403 DOI: 10.1103/PhysRevB.87.245403
[16]
Lopes dos Santos J M B Peres N M R Castro Neto A H 2007 Phys. Rev. Lett. 99 256802 DOI: 10.1103/PhysRevLett.99.256802
[17]
Shallcross S Sharma S Kandelaki E Pankratov O A 2010 Phys. Rev. B 81 165105 DOI: 10.1103/PhysRevB.81.165105
[18]
Trambly de Laissardière G Mayou D Magaud L 2012 Phys. Rev. B 86 125413 DOI: 10.1103/PhysRevB.86.125413
[19]
Trambly de Laissardière G Mayou D Magaud L 2010 Nano Lett. 10 804 DOI: 10.1021/nl902948m
[20]
Bistritzer R MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233 DOI: 10.1073/pnas.1108174108
[21]
San-Jose P Gonzalez J Guinea F 2012 Phys. Rev. Lett. 108 216802 DOI: 10.1103/PhysRevLett.108.216802
[22]
Suárez Morell E Correa J D Vargas P Pacheco M Barticevic Z 2010 Phys. Rev. B 82 121407(R) DOI: 10.1103/PhysRevB.82.121407
[23]
Uchida K Furuya S Iwata J I Oshiyama A 2014 Phys. Rev. B 90 155451 DOI: 10.1103/PhysRevB.90.155451
[24]
Wang Z F Liu F Chou M Y 2012 Nano Lett. 12 3833 DOI: 10.1021/nl301794t
[25]
Weckbecker D Shallcross S Fleischmann M Ray N Sharma S Pankratov O 2016 Phys. Rev. B 93 035452 DOI: 10.1103/PhysRevB.93.035452
[26]
Lopes dos Santos J M B Peres N M R Castro Neto A H 2012 Phys. Rev. B 86 155449 DOI: 10.1103/PhysRevB.86.155449
[27]
Sboychakov A O Rakhmanov A L Rozhkov A V Nori F 2015 Phys. Rev. B 92 075402 DOI: 10.1103/PhysRevB.92.075402
[28]
Shallcross S Sharma S Pankratov O A 2008 Phys. Rev. Lett. 101 056803 DOI: 10.1103/PhysRevLett.101.056803
[29]
Chu Z D He W Y He L 2013 Phys. Rev. B 87 155419 DOI: 10.1103/PhysRevB.87.155419
[30]
Bistritzer R MacDonald A H 2010 Phys. Rev. B 81 245412 DOI: 10.1103/PhysRevB.81.245412
[31]
Moon P Koshino M 2012 Phys. Rev. B 85 195458 DOI: 10.1103/PhysRevB.85.195458
[32]
Cherkez V de Laissardière G T Mallet P Veuillen J Y 2015 Phys. Rev. B 91 155428 DOI: 10.1103/PhysRevB.91.155428
[33]
Luican A Li G Reina A Kong J Nair R R Novoselov K S Geim A K Andrei E Y 2011 Phys. Rev. Lett. 106 126802 DOI: 10.1103/PhysRevLett.106.126802
[34]
Yan W Liu M Dou R F Meng L Feng L Chu Z D Zhang Y Liu Z Nie J C He L 2012 Phys. Rev. Lett. 109 126801 DOI: 10.1103/PhysRevLett.109.126801
[35]
Brihuega I Mallet P González-Herrero H Trambly de Laissardière G Ugeda M M Magaud L Gómez-Rodríguez J M Ynduráin F Veuillen J Y 2012 Phys. Rev. Lett. 109 196802 DOI: 10.1103/PhysRevLett.109.196802
[36]
Li G Luican A Lopes dos Santos J M B Castro Neto A H Reina A Kong J Andrei E Y 2010 Nat. Phys. 6 109 DOI: 10.1038/nphys1463
[37]
Yin L J Qiao J B Zuo W J Li W T He L 2015 Phys. Rev. B 92 081406(R) DOI: 10.1103/PhysRevB.92.081406
[38]
Yin L J Qiao J B Wang W X Zuo W J Yan W Xu R Dou R F Nie J C He L 2015 Phys. Rev. B 92 201408(R) DOI: 10.1103/PhysRevB.92.201408
[39]
Wong D Wang Y Jung J Pezzini S DaSilva A M Tsai H Z Jung H S Khajeh R Kim Y Lee J Kahn S Tollabimazraehno S Rasool H Watanabe K Taniguchi T Zettl A Adam S MacDonald A H Crommie M F 2015 Phys. Rev. B 92 155409 DOI: 10.1103/PhysRevB.92.155409
[40]
Yan W Meng L Liu M Qiao J B Chu Z D Dou R F Liu Z Nie J C Naugle D G He L 2014 Phys. Rev. B 90 115402 DOI: 10.1103/PhysRevB.90.115402
[41]
Kim Y Yun H Nam S G Son M Lee D S Kim D C Seo S Choi H C Lee H J Lee S W Kim J S 2013 Phys. Rev. Lett. 110 096602 DOI: 10.1103/PhysRevLett.110.096602
[42]
Miller D L Kubista K D Rutter G M Ruan M de Heer W A First P N Stroscio J A 2009 Science 324 924 DOI: 10.1126/science.1171810
[43]
Hass J Varchon F Millán-Otoya J E Sprinkle M Sharma N de Heer W A Berger C First P N Magaud L Conrad E H 2008 Phys. Rev. Lett. 100 125504 DOI: 10.1103/PhysRevLett.100.125504
[44]
Sprinkle M Siegel D Hu Y Hicks J Tejeda A Taleb-Ibrahimi A Le Fèvre P Bertran F Vizzini S Enriquez H Chiang S Soukiassian P Berger C de Heer W A Lanzara A Conrad E H 2009 Phys. Rev. Lett. 103 226803 DOI: 10.1103/PhysRevLett.103.226803
[45]
Koren E Leven I Lörtscher E Knoll A Hod O Duerig U 2016 Nat. Nanotech. 11 752 DOI: 10.1038/nnano.2016.85
[46]
Ni Z Wang Y Yu T You Y Shen Z 2008 Phys. Rev. B 77 235403 DOI: 10.1103/PhysRevB.77.235403
[47]
Angeli M Mandelli D Valli A Amaricci A Capone M Tosatti E Fabrizio M 2018 Phys. Rev. B 98 235137 DOI: 10.1103/PhysRevB.98.235137
[48]
Lin X Tománek D 2018 Phys. Rev. B 98 081410(R) DOI: 10.1103/PhysRevB.98.081410
[49]
Carr S Fang S Po H C Vishwanath A Kaxiras E 2019 Phys. Rev. Res. 1 033072 DOI: 10.1103/PhysRevResearch.1.033072
[50]
Goodwin Z A H Corsetti F Mostofi A A Lischner J 2019 Phys. Rev. B 100 235424 DOI: 10.1103/PhysRevB.100.235424
[51]
Po H C Zou L Senthil T Vishwanath A 2019 Phys. Rev. B 99 195455 DOI: 10.1103/PhysRevB.99.195455
[52]
Koshino M Yuan N F Q Koretsune T Ochi M Kuroki K Fu L 2018 Phys. Rev. X 8 031087 DOI: 10.1103/PhysRevX.8.031087 DOI: 10.1103/PhysRevB.98.195101
[53]
Su Y Lin S Z 2018 Phys. Rev. B 98 195101
[54]
Tarnopolsky G Kruchkov A J Vishwanath A 2019 Phys. Rev. Lett. 122 106405 DOI: 10.1103/PhysRevLett.122.106405
[55]
Julku A Peltonen T J Liang L Heikkilä T T Törmä P 2020 Phys. Rev. B 101 060505(R) DOI: 10.1103/PhysRevB.101.060505
[56]
Ledwith P J Tarnopolsky G Khalaf E Vishwanath A 2020 Phys. Rev. Res. 2 023237 DOI: 10.1103/PhysRevResearch.2.023237
[57]
Carr S Fang S Zhu Z Kaxiras E 2019 Phys. Rev. Res. 1 013001 DOI: 10.1103/PhysRevResearch.1.013001
[58]
Lucignano P Alfè D Cataudella V Ninno D Cantele G 2019 Phys. Rev. B 99 195419 DOI: 10.1103/PhysRevB.99.195419
[59]
Fang S Carr S Zhu Z Massatt D Kaxiras E 2019 arXiv:1908.00058
[60]
Leconte N Javvaji S An J Jung J 2019 arXiv:1910.12805
[61]
Utama M I B Koch R J Lee K Leconte N Li H Zhao S Jiang L Zhu J Watanabe K Taniguchi T Ashby P D Weber-Bargioni A Zettl A Jozwiak C Jung J Rotenberg E Bostwick A Wang F 2020 Nat. Phys. DOI: 10.1038/s41567-020-0974-x
[62]
Lisi S Lu X Benschop T de Jong T A Stepanov P Duran J R Margot F Cucchi I Cappelli E Hunter A Tamai A Kandyba V Giampietri A Barinov A Jobst J Stalman V Leeuwenhoek M Watanabe K Taniguchi T Rademaker L van der Molen S J Allan M P Efetov D K Baumberger F 2020 Nat. Phys. DOI: 10.1038/s41567-020-01041-x
[63]
Tomarken S L Cao Y Demir A Watanabe K Taniguchi T Jarillo-Herrero P Ashoori R C 2019 Phys. Rev. Lett. 123 046601 DOI: 10.1103/PhysRevLett.123.046601
[64]
Nuckolls K P Oh M Wong D Lian B Watanabe K Taniguchi T Bernevig B A Yazdani A 2020 arXiv:2007.03810
[65]
Zhang Z Myers R Watanabe K Taniguchi T LeRoy B J 2020 Phys. Rev. Res. 2 033181 DOI: 10.1103/PhysRevResearch.2.033181
[66]
Wong D Nuckolls K P Oh M Lian B Xie Y Jeon S Watanabe K Taniguchi T Bernevig B A Yazdani A 2020 Nature 582 198 DOI: 10.1038/s41586-020-2339-0
[67]
Xie Y Lian B Jäck B Liu X Chiu C L Watanabe K Taniguchi T Bernevig B A Yazdani A 2019 Nature 572 101 DOI: 10.1038/s41586-019-1422-x
[68]
Choi Y Kemmer J Peng Y Thomson A Arora H Polski R Zhang Y Ren H Alicea J Refael G von Oppen F Watanabe K Taniguchi T Nadj-Perge S 2019 Nat. Phys. 15 1174 DOI: 10.1038/s41567-019-0606-5
[69]
Kerelsky A McGilly L J Kennes D M Xian L Yankowitz M Chen S Watanabe K Taniguchi T Hone J Dean C Rubio A Pasupathy A N 2019 Nature 572 95 DOI: 10.1038/s41586-019-1431-9
[70]
Jiang Y Lai X Watanabe K Taniguchi T Haule K Mao J Andrei E Y 2019 Nature 573 91 DOI: 10.1038/s41586-019-1460-4
[71]
Ren Y N Lu C Zhang Y Li S Y Liu Y W Yan C Guo Z H Liu C C Yang F He L 2020 ACS Nano DOI: 10.1021/acsnano.0c04631
[72]
Li S Y Liu K Q Yin L J Wang W X Yan W Yang X Q Yang J K Liu H Jiang H He L 2017 Phys. Rev. B 96 155416 DOI: 10.1103/PhysRevB.96.155416
[73]
Kim K DaSilva A Huang S Fallahazad B Larentis S Taniguchi T Watanabe K LeRoy B J MacDonald A H Tutuc E 2017 Proc. Natl. Acad. Sci. USA 114 3364 DOI: 10.1073/pnas.1620140114
[74]
Li S Y Zhang Y Ren Y N Liu J Dai X He L 2020 Phys. Rev. B 102 121406 DOI: 10.1103/PhysRevB.102.121406
[75]
Polshyn H Yankowitz M Chen S Zhang Y Watanabe K Taniguchi T Dean C R Young A F 2019 Nat. Phys. 15 1011 DOI: 10.1038/s41567-019-0596-3
[76]
Serlin M Tschirhart C L Polshyn H Zhang Y Zhu J Watanabe K Taniguchi T Balents L Young A F 2020 Science 367 900 DOI: 10.1126/science.aay5533
[77]
Cao Y Fatemi V Demir A Fang S Tomarken S L Luo J Y Sanchez-Yamagishi J D Watanabe K Taniguchi T Kaxiras E Ashoori R C Jarillo-Herrero P 2018 Nature 556 80 DOI: 10.1038/nature26154
[78]
Codecido E Wang Q Koester R Che S Tian H Lv R Tran S Watanabe K Taniguchi T Zhang F Bockrath M Lau C N 2019 Sci. Adv. 5 eaaw9770 DOI: 10.1126/sciadv.aaw9770
[79]
Cao Y Chowdhury D Rodan-Legrain D Rubies-Bigorda O Watanabe K Taniguchi T Senthil T Jarillo-Herrero P 2020 Phys. Rev. Lett. 124 076801 DOI: 10.1103/PhysRevLett.124.076801
[80]
Cao Y Fatemi V Fang S Watanabe K Taniguchi T Kaxiras E Jarillo-Herrero P 2018 Nature 556 43 DOI: 10.1038/nature26160
[81]
Arora H S Polski R Zhang Y Thomson A Choi Y Kim H Lin Z Wilson I Z Xu X Chu J H Watanabe K Taniguchi T Alicea J Nadj-Perge S 2020 Nature 583 379 DOI: 10.1038/s41586-020-2473-8
[82]
Saito Y Ge J Watanabe K Taniguchi T Young A F 2020 Nat. Phys.
[83]
Stepanov P Das I Lu X Fahimniya A Watanabe K Taniguchi T Koppens F H L Lischner J Levitov L Efetov D K 2020 Nature 583 375 DOI: 10.1038/s41586-020-2459-6
[84]
Lu X Stepanov P Yang W Xie M Aamir M A Das I Urgell C Watanabe K Taniguchi T Zhang G Bachtold A MacDonald A H Efetov D K 2019 Nature 574 653 DOI: 10.1038/s41586-019-1695-0
[85]
Saito Y Ge J Rademaker L Watanabe K Taniguchi T Abanin D A Young A F 2020 arXiv:2007.06115
[86]
Wu S Zhang Z Watanabe K Taniguchi T Andrei E Y 2020 arXiv:2007.03735
[87]
Liu X Wang Z Watanabe K Taniguchi T Vafek O Li J I A 2020 arXiv:2003.11072
[88]
Cao Y Rodan-Legrain D Park J M Yuan F N Watanabe K Taniguchi T Fernandes R M Fu L Jarillo-Herrero P 2020 arXiv:2004.04148
[89]
Uri A Grover S Cao Y Crosse J A Bagani K Rodan-Legrain D Myasoedov Y Watanabe K Taniguchi T Moon P Koshino M Jarillo-Herrero P Zeldov E 2020 Nature 581 47 DOI: 10.1038/s41586-020-2255-3
[90]
Yankowitz M Chen S Polshyn H Zhang Y Watanabe K Taniguchi T Graf D Young A F Dean C R 2019 Science 363 1059 DOI: 10.1126/science.aav1910
[91]
Zondiner U Rozen A Rodan-Legrain D Cao Y Queiroz R Taniguchi T Watanabe K Oreg Y von Oppen F Stern A Berg E Jarillo-Herrero P Ilani S 2020 Nature 582 203 DOI: 10.1038/s41586-020-2373-y
[92]
Das I Lu X Herzog-Arbeitman J Song Z D Watanabe K Taniguchi T Bernevig B A Efetov D K 2020 arXiv:2007.13390
[93]
Sharpe A L Fox E J Barnard A W Finney J Watanabe K Taniguchi T Kastner M A Goldhaber-Gordon D 2019 Science 365 605 DOI: 10.1126/science.aaw3780
[94]
Tschirhart C L Serlin M Polshyn H Shragai A Xia Z Zhu J Zhang Y Watanabe K Taniguchi T Huber M E Young A F 2020 arXiv:2006.08053
[95]
Liu Y W Qiao J B Yan C Zhang Y Li S Y He L 2019 Phys. Rev. B 99 201408(R) DOI: 10.1103/PhysRevB.99.201408
[96]
Zhang Y Hou Z Zhao Y X Guo Z H Liu Y W Li S Y Ren Y N Sun Q F He L 2020 Phys. Rev. B 102 081403(R) DOI: 10.1103/PhysRevB.102.081403
[97]
Wang W X Jiang H Zhang Y Li S Y Liu H Li X Wu X He L 2017 Phys. Rev. B 96 115434 DOI: 10.1103/PhysRevB.96.115434
[98]
Koren E Duerig U 2016 Phys. Rev. B 93 201404(R) DOI: 10.1103/PhysRevB.93.201404
[99]
Ahn S J Moon P Kim T H Kim H W Shin H C Kim E H Cha H W Kahng S J Kim P Koshino M Son Y W Yang C W Ahn J R 2018 Science 361 782 DOI: 10.1126/science.aar8412
[100]
Yao W Wang E Bao C Zhang Y Zhang K Bao K Chan C K Chen C Avila J Asensio M C Zhu J Zhou S 2018 Proc. Natl. Acad. Sci. USA 115 6928 DOI: 10.1073/pnas.1720865115
[101]
Moon P Koshino M Son Y W 2019 Phys. Rev. B 99 165430 DOI: 10.1103/PhysRevB.99.165430
[102]
Park M J Kim H S Lee S 2019 Phys. Rev. B 99 245401 DOI: 10.1103/PhysRevB.99.245401
[103]
Yan C Ma D L Qiao J B Zhong H Y Yang L Li S Y Fu Z Q Zhang Y He L 2019 2D Mater. 6 045041 DOI: 10.1088/2053-1583/ab3b16
[104]
Yu G Wu Z Zhan Z Katsnelson M I Yuan S 2019 npj Comput. Mater. 5 122 DOI: 10.1038/s41524-019-0258-0
[105]
Deng B Wang B Li N Li R Wang Y Tang J Fu Q Tian Z Gao P Xue J Peng H 2020 ACS Nano 14 1656 DOI: 10.1021/acsnano.9b07091
[106]
Hua C B Chen R Zhou B Xu D H 2020 arXiv:2001.07551
[107]
Yu G Katsnelson M I Yuan S 2020 Phys. Rev. B 102 045113 DOI: 10.1103/PhysRevB.102.045113
[108]
San-Jose P Prada E 2013 Phys. Rev. B 88 121408(R) DOI: 10.1103/PhysRevB.88.121408
[109]
Andelković M Covaci L Peeters F M 2018 Phys. Rev. Mater. 2 034004 DOI: 10.1103/PhysRevMaterials.2.034004
[110]
Efimkin D K MacDonald A H 2018 Phys. Rev. B 98 035404 DOI: 10.1103/PhysRevB.98.035404
[111]
Huang S Kim K Efimkin D K Lovorn T Taniguchi T Watanabe K MacDonald A H Tutuc E LeRoy B J 2018 Phys. Rev. Lett. 121 037702 DOI: 10.1103/PhysRevLett.121.037702
[112]
Rickhaus P Wallbank J Slizovskiy S Pisoni R Overweg H Lee Y Eich M Liu M H Watanabe K Taniguchi T Ihn T Ensslin K 2018 Nano Lett. 18 6725 DOI: 10.1021/acs.nanolett.8b02387
[113]
Xu S G Berdyugin A I Kumaravadivel P Guinea F Krishna Kumar R Bandurin D A Morozov S V Kuang W Tsim B Liu S Edgar J H Grigorieva I V Fal’ko V I Kim M Geim A K 2019 Nat. Commun. 10 4008 DOI: 10.1038/s41467-019-11971-7
[114]
De Beule C Dominguez F Recher P 2020 Phys. Rev. Lett. 125 096402 DOI: 10.1103/PhysRevLett.125.096402
[115]
Qiao J B Yin L J He L 2018 Phys. Rev. B 98 235402 DOI: 10.1103/PhysRevB.98.235402
[116]
Liu Y W Su Y Zhou X F Yin L J Yan C Li S Y Yan W Han S Fu Z Q Zhang Y Yang Q Ren Y N He L 2020 arXiv:2007.01993 DOI: https://arxiv.org/abs/2007.01993
[117]
Ramires A Lado J L 2018 Phys. Rev. Lett. 121 146801 DOI: 10.1103/PhysRevLett.121.146801
[118]
Tsim B Nam N N T Koshino M 2020 Phys. Rev. B 101 125409 DOI: 10.1103/PhysRevB.101.125409
[119]
Walet N R Guinea F 2019 2D Mater. 7 015023 DOI: 10.1088/2053-1583/ab57f8
[120]
Fleischmann M Gupta R Wullschläger F Theil S Weckbecker D Meded V Sharma S Meyer B Shallcross S 2020 Nano Lett. 20 971 DOI: 10.1021/acs.nanolett.9b04027
[121]
Lebedeva I V Popov A M 2020 J. Phys. Chem. C 124 2120 DOI: 10.1021/acs.jpcc.9b08306
[122]
Hou T Ren Y Quan Y Jung J Ren W Qiao Z 2020 Phys. Rev. B 101 201403(R) DOI: 10.1103/PhysRevB.101.201403
[123]
Chou Y Z Wu F Sarma S D 2020 Phys. Rev. Res. 2 033271 DOI: 10.1103/PhysRevResearch.2.033271
[124]
Sunku S S Ni G X Jiang B Y Yoo H Sternbach A McLeod A S Stauber T Xiong L Taniguchi T Watanabe K Kim P Fogler M M Basov D N 2018 Science 362 1153 DOI: 10.1126/science.aau5144
[125]
Park M J Kim Y Cho G Y Lee S 2019 Phys. Rev. Lett. 123 216803 DOI: 10.1103/PhysRevLett.123.216803
[126]
Yoo H Engelke R Carr S Fang S Zhang K Cazeaux P Sung S H Hovden R Tsen A W Taniguchi T Watanabe K Yi G C Kim M Luskin M Tadmor E B Kaxiras E Kim P 2019 Nat. Mater. 18 448 DOI: 10.1038/s41563-019-0346-z
[127]
Wijk M M v Schuring A Katsnelson M I Fasolino A 2015 2D Mater. 2 034010 DOI: 10.1088/2053-1583/2/3/034010
[128]
Nam N N T Koshino M 2017 Phys. Rev. B 96 075311 DOI: 10.1103/PhysRevB.96.075311
[129]
Gargiulo F Yazyev O V 2017 2D Mater. 5 015019 DOI: 10.1088/2053-1583/aa9640
[130]
Jain S K Juričić V Barkema G T 2016 2D Mater. 4 015018 DOI: 10.1088/2053-1583/4/1/015018
[131]
McCann E 2006 Phys. Rev. B 74 161403(R) DOI: 10.1103/PhysRevB.74.161403
[132]
Oostinga J B Heersche H B Liu X Morpurgo A F Vandersypen L M K 2008 Nat. Mater. 7 151 DOI: 10.1038/nmat2082
[133]
Li J Wang K McFaul K J Zern Z Ren Y Watanabe K Taniguchi T Qiao Z Zhu J 2016 Nat. Nanotech. 11 1060 DOI: 10.1038/nnano.2016.158
[134]
Zhang Y Tang T T Girit C Hao Z Martin M C Zettl A Crommie M F Shen Y R Wang F 2009 Nature 459 820 DOI: 10.1038/nature08105
[135]
Castro E V Novoselov K S Morozov S V Peres N M R dos Santos J M B L Nilsson J Guinea F Geim A K Neto A H C 2007 Phys. Rev. Lett. 99 216802 DOI: 10.1103/PhysRevLett.99.216802
[136]
Mak K F Lui C H Shan J Heinz T F 2009 Phys. Rev. Lett. 102 256405 DOI: 10.1103/PhysRevLett.102.256405
[137]
Vaezi A Liang Y Ngai D H Yang L Kim E A 2013 Phys. Rev. X 3 021018 DOI: 10.1103/PhysRevX.3.021018
[138]
Zhang F MacDonald A H Mele E J 2013 Proc. Natl. Acad. Sci. USA 110 10546 DOI: 10.1073/pnas.1308853110
[139]
Pelc M Jaskólski W Ayuela A Chico L 2015 Phys. Rev. B 92 085433 DOI: 10.1103/PhysRevB.92.085433
[140]
Lee C Kim G Jung J Min H 2016 Phys. Rev. B 94 125438 DOI: 10.1103/PhysRevB.94.125438
[141]
Alden J S Tsen A W Huang P Y Hovden R Brown L Park J Muller D A McEuen P L 2013 Proc. Natl. Acad. Sci. USA 110 11256 DOI: 10.1073/pnas.1309394110
[142]
Ju L Shi Z Nair N Lv Y Jin C Velasco J Ojeda-Aristizabal C Bechtel H A Martin M C Zettl A Analytis J Wang F 2015 Nature 520 650 DOI: 10.1038/nature14364
[143]
Yin L J Jiang H Qiao J B He L 2016 Nat. Commun. 7 11760 DOI: 10.1038/ncomms11760
[144]
Suzuki T Iimori T Ahn S J Zhao Y Watanabe M Xu J Fujisawa M Kanai T Ishii N Itatani J Suwa K Fukidome H Tanaka S Ahn J R Okazaki K Shin S Komori F Matsuda I 2019 ACS Nano 13 11981 DOI: 10.1021/acsnano.9b06091
[145]
Bocquet F C Lin Y R Franke M Samiseresht N Parhizkar S Soubatch S Lee T L Kumpf C Tautz F S 2020 Phys. Rev. Lett. 125 106102 DOI: 10.1103/PhysRevLett.125.106102
[146]
Takesaki Y Kawahara K Hibino H Okada S Tsuji M Ago H 2016 Chem. Mater. 28 4583 DOI: 10.1021/acs.chemmater.6b01137
[147]
Pezzini S Mišeikis V Piccinini G Forti S Pace S Engelke R Rossella F Watanabe K Taniguchi T Kim P Coletti C 2020 Nano Lett. 20 3313 DOI: 10.1021/acs.nanolett.0c00172
[148]
Pal H K Spitz S Kindermann M 2019 Phys. Rev. Lett. 123 186402 DOI: 10.1103/PhysRevLett.123.186402
[149]
Anderson P W 1987 Science 235 1196 DOI: 10.1126/science.235.4793.1196
[150]
Balents L 2010 Nature 464 199 DOI: 10.1038/nature08917
[151]
Norman M R 2016 Rev. Mod. Phys. 88 041002 DOI: 10.1103/RevModPhys.88.041002
[152]
Fidrysiak M Zegrodnik M Spałek J 2018 Phys. Rev. B 98 085436 DOI: 10.1103/PhysRevB.98.085436
[153]
Guo H Zhu X Feng S Scalettar R T 2018 Phys. Rev. B 97 235453 DOI: 10.1103/PhysRevB.97.235453
[154]
Guinea F Walet N R 2018 Proc. Natl. Acad. Sci. USA 115 13174 DOI: 10.1073/pnas.1810947115
[155]
Isobe H Yuan N F Q Fu L 2018 Phys. Rev. X 8 041041
[156]
Kennes D M Lischner J Karrasch C 2018 Phys. Rev. B 98 241407(R) DOI: 10.1103/PhysRevB.98.241407
[157]
Kang J Vafek O 2018 Phys. Rev. X 8 031088 DOI: 10.1103/PhysRevX.8.031088
[158]
Liu C C Zhang L D Chen W Q Yang F 2018 Phys. Rev. Lett. 121 217001 DOI: 10.1103/PhysRevLett.121.217001
[159]
Padhi B Setty C Phillips P W 2018 Nano Lett. 18 6175 DOI: 10.1021/acs.nanolett.8b02033
[160]
Rademaker L Mellado P 2018 Phys. Rev. B 98 235158 DOI: 10.1103/PhysRevB.98.235158
[161]
Venderbos J W F Fernandes R M 2018 Phys. Rev. B 98 245103 DOI: 10.1103/PhysRevB.98.245103
[162]
Xu C Balents L 2018 Phys. Rev. Lett. 121 087001 DOI: 10.1103/PhysRevLett.121.087001
[163]
Yuan N F Q Fu L 2018 Phys. Rev. B 98 045103 DOI: 10.1103/PhysRevB.98.045103
[164]
Alidoust M Willatzen M Jauho A P 2019 Phys. Rev. B 99 155413 DOI: 10.1103/PhysRevB.99.155413
[165]
Chou Y Z Lin Y P Das Sarma S Nandkishore R M 2019 Phys. Rev. B 100 115128 DOI: 10.1103/PhysRevB.100.115128
[166]
González J Stauber T 2019 Phys. Rev. Lett. 122 026801 DOI: 10.1103/PhysRevLett.122.026801
[167]
Huang T Zhang L Ma T 2019 Sci. Bull. 64 310 DOI: 10.1016/j.scib.2019.01.026
[168]
Kumar P Vanhala T I Törmä P 2019 Phys. Rev. B 100 125141 DOI: 10.1103/PhysRevB.100.125141
[169]
Lin Y P Nandkishore R M 2019 Phys. Rev. B 100 085136 DOI: 10.1103/PhysRevB.100.085136
[170]
Ray S Jung J Das T 2019 Phys. Rev. B 99 134515 DOI: 10.1103/PhysRevB.99.134515
[171]
Roy B Juričić V 2019 Phys. Rev. B 99 121407(R) DOI: 10.1103/PhysRevB.99.121407
[172]
Tang Q K Yang L Wang D Zhang F C Wang Q H 2019 Phys. Rev. B 99 094521 DOI: 10.1103/PhysRevB.99.094521
[173]
Wu F Sarma S D 2019 Phys. Rev. B 99 220507(R) DOI: 10.1103/PhysRevB.99.220507
[174]
Wu X C Keselman A Jian C M Pawlak K A Xu C 2019 Phys. Rev. B 100 024421 DOI: 10.1103/PhysRevB.100.024421
[175]
You Y Z Vishwanath A 2019 npj Quantum Mater. 4 16 DOI: 10.1038/s41535-019-0153-4
[176]
Choi Y W Choi H J 2018 Phys. Rev. B 98 241412(R) DOI: 10.1103/PhysRevB.98.241412
[177]
Peltonen T J Ojajärvi R Heikkilä T T 2018 Phys. Rev. B 98 220504(R) DOI: 10.1103/PhysRevB.98.220504
[178]
Wu F MacDonald A H Martin I 2018 Phys. Rev. Lett. 121 257001 DOI: 10.1103/PhysRevLett.121.257001
[179]
Lian B Wang Z Bernevig B A 2019 Phys. Rev. Lett. 122 257002 DOI: 10.1103/PhysRevLett.122.257002
[180]
Wu F Hwang E Sarma S D 2019 Phys. Rev. B 99 165112 DOI: 10.1103/PhysRevB.99.165112
[181]
Angeli M Tosatti E Fabrizio M 2019 Phys. Rev. X 9 041010 DOI: 10.1103/PhysRevX.9.041010
[182]
Po H C Zou L Vishwanath A Senthil T 2018 Phys. Rev. X 8 031089 DOI: 10.1103/PhysRevX.8.031089
[183]
Seo K Kotov V N Uchoa B 2019 Phys. Rev. Lett. 122 246402 DOI: 10.1103/PhysRevLett.122.246402
[184]
Dodaro J F Kivelson S A Schattner Y Sun X Q Wang C 2018 Phys. Rev. B 98 075154 DOI: 10.1103/PhysRevB.98.075154
[185]
Ochi M Koshino M Kuroki K 2018 Phys. Rev. B 98 081102(R) DOI: 10.1103/PhysRevB.98.081102
[186]
Liu S Khalaf E Lee J Y Vishwanath A 2019 arXiv:1905.07409
[187]
Xie M MacDonald A H 2020 Phys. Rev. Lett. 124 097601 DOI: 10.1103/PhysRevLett.124.097601
[188]
Alavirad Y Sau J D 2019 arXiv:1907.13633
[189]
Repellin C Dong Z Zhang Y H Senthil T 2020 Phys. Rev. Lett. 124 187601 DOI: 10.1103/PhysRevLett.124.187601
[190]
Wu F Sarma S D 2020 Phys. Rev. Lett. 124 046403 DOI: 10.1103/PhysRevLett.124.046403
[191]
Zhang Y H Mao D Senthil T 2019 Phys. Rev. Res. 1 033126 DOI: 10.1103/PhysRevResearch.1.033126
[192]
Bultinck N Chatterjee S Zaletel M P 2020 Phys. Rev. Lett. 124 166601 DOI: 10.1103/PhysRevLett.124.166601
[193]
Liu J Dai X 2019 arXiv:1911.03760
[194]
Chatterjee S Bultinck N Zaletel M P 2020 Phys. Rev. B 101 165141 DOI: 10.1103/PhysRevB.101.165141
[195]
Bultinck N Khalaf E Liu S Chatterjee S Vishwanath A Zaletel M P 2020 Phys. Rev. X 10 031034 DOI: 10.1103/PhysRevX.10.031034
[196]
Chichinadze D V Classen L Chubukov A V 2020 Phys. Rev. B 102 125120 DOI: 10.1103/PhysRevB.102.125120
[197]
Zhang Y Jiang K Wang Z Zhang F 2020 Phys. Rev. B 102 035136 DOI: 10.1103/PhysRevB.102.035136
[198]
Kang J Vafek O 2019 Phys. Rev. Lett. 122 246401 DOI: 10.1103/PhysRevLett.122.246401
[199]
Kang J Vafek O 2020 Phys. Rev. B 102 035161 DOI: 10.1103/PhysRevB.102.035161
[200]
Liao Y D Meng Z Y Xu X Y 2019 Phys. Rev. Lett. 123 157601 DOI: 10.1103/PhysRevLett.123.157601
[201]
Sherkunov Y Betouras J J 2018 Phys. Rev. B 98 205151 DOI: 10.1103/PhysRevB.98.205151
[202]
Cea T Guinea F 2020 Phys. Rev. B 102 045107 DOI: 10.1103/PhysRevB.102.045107
[203]
Yao Q van Bremen R Slotman G J Zhang L Haartsen S Sotthewes K Bampoulis P de Boeij P L van Houselt A Yuan S Zandvliet H J W 2017 Phys. Rev. B 95 245116 DOI: 10.1103/PhysRevB.95.245116
[204]
Cao Y Luo J Y Fatemi V Fang S Sanchez-Yamagishi J D Watanabe K Taniguchi T Kaxiras E Jarillo-Herrero P 2016 Phys. Rev. Lett. 117 116804 DOI: 10.1103/PhysRevLett.117.116804
[205]
Goerbig M O 2011 Rev. Mod. Phys. 83 1193 DOI: 10.1103/RevModPhys.83.1193
[206]
Nomura K MacDonald A H 2006 Phys. Rev. Lett. 96 256602 DOI: 10.1103/PhysRevLett.96.256602
[207]
Yang K Das Sarma S MacDonald A H 2006 Phys. Rev. B 74 075423 DOI: 10.1103/PhysRevB.74.075423
[208]
Sheng L Sheng D N Haldane F D M Balents L 2007 Phys. Rev. Lett. 99 196802 DOI: 10.1103/PhysRevLett.99.196802
[209]
Nomura K Ryu S Lee D H 2009 Phys. Rev. Lett. 103 216801 DOI: 10.1103/PhysRevLett.103.216801
[210]
Lian Y Rosch A Goerbig M O 2016 Phys. Rev. Lett. 117 056806 DOI: 10.1103/PhysRevLett.117.056806
[211]
Alicea J Fisher M P A 2006 Phys. Rev. B 74 075422 DOI: 10.1103/PhysRevB.74.075422
[212]
Song Y J Otte A F Kuk Y Hu Y Torrance D B First P N De Heer W A Min H Adam S Stiles M D MacDonald A H Stroscio J A 2010 Nature 467 185 DOI: 10.1038/nature09330
[213]
Li S Y Zhang Y Yin L J He L 2019 Phys. Rev. B 100 085437 DOI: 10.1103/PhysRevB.100.085437
[214]
Zhang Y Jiang Z Small J Purewal M Tan Y W Fazlollahi M Chudow J Jaszczak J Stormer H Kim P 2006 Phys. Rev. Lett. 96 136806 DOI: 10.1103/PhysRevLett.96.136806
[215]
Jiang Z Zhang Y Stormer H L Kim P 2007 Phys. Rev. Lett. 99 106802 DOI: 10.1103/PhysRevLett.99.106802
[216]
Bolotin K I Ghahari F Shulman M D Stormer H L Kim P 2009 Nature 462 196 DOI: 10.1038/nature08582
[217]
Du X Skachko I Duerr F Luican A Andrei E Y 2009 Nature 462 192 DOI: 10.1038/nature08522
[218]
Dean C R Young A F Cadden-Zimansky P Wang L Ren H Watanabe K Taniguchi T Kim P Hone J Shepard K L 2011 Nat. Phys. 7 693 DOI: 10.1038/nphys2007
[219]
Feldman B E Krauss B Smet J H Yacoby A 2012 Science 337 1196 DOI: 10.1126/science.1224784
[220]
Young A F Dean C R Wang L Ren H Cadden-Zimansky P Watanabe K Taniguchi T Hone J Shepard K L Kim P 2012 Nat. Phys. 8 550 DOI: 10.1038/nphys2307
[221]
Yu G L Jalil R Belle B Mayorov A S Blake P Schedin F Morozov S V Ponomarenko L A Chiappini F Wiedmann S Zeitler U Katsnelson M I Geim A K Novoselov K S Elias D C 2013 Proc. Natl. Acad. Sci. USA 110 3282 DOI: 10.1073/pnas.1300599110
[222]
Bi Z Yuan N F Q Fu L 2019 Phys. Rev. B 100 035448 DOI: 10.1103/PhysRevB.100.035448
[223]
Wilson J H Fu Y Das Sarma S Pixley J H 2020 Phys. Rev. Res. 2 023325 DOI: 10.1103/PhysRevResearch.2.023325
[224]
He W Y Goldhaber-Gordon D Law K T 2020 Nat. Commun. 11 1650 DOI: 10.1038/s41467-020-15473-9
[225]
Zhu J Su J J MacDonald A H 2020 arXiv:2001.05084
[226]
Liu J Dai X 2020 npj Comput. Mater. 6 57 DOI: 10.1038/s41524-020-0299-4
[227]
Kim M Xu S G Berdyugin A I Principi A Slizovskiy S Xin N Kumaravadivel P Kuang W Hamer M Krishna Kumar R Gorbachev R V Watanabe K Taniguchi T Grigorieva I V Fal’ko V I Polini M Geim A K 2020 Nat. Commun. 11 2339 DOI: 10.1038/s41467-020-15829-1
[228]
Wang Q Y Li Z Zhang W H Zhang Z C Zhang J S Li W Ding H Ou Y B Deng P Chang K Wen J Song C L He K Jia J F Ji S H Wang Y Y Wang L L Chen X Ma X C Xue Q K 2012 Chin. Phys. Lett. 29 037402 DOI: 10.1088/0256-307X/29/3/037402
[229]
Natterer F D Ha J Baek H Zhang D Cullen W G Zhitenev N B Kuk Y Stroscio J A 2016 Phys. Rev. B 93 045406 DOI: 10.1103/PhysRevB.93.045406
[230]
Tonnoir C Kimouche A Coraux J Magaud L Delsol B Gilles B Chapelier C 2013 Phys. Rev. Lett. 111 246805 DOI: 10.1103/PhysRevLett.111.246805
[231]
Qiao J B Gong Y Zuo W J Wei Y C Ma D L Yang H Yang N Qiao K Y Shi J A Gu L He L 2017 Phys. Rev. B 95 201403(R) DOI: 10.1103/PhysRevB.95.201403
[232]
Mayorov A S Gorbachev R V Morozov S V Britnell L Jalil R Ponomarenko L A Blake P Novoselov K S Watanabe K Taniguchi T Geim A K 2011 Nano Lett. 11 2396 DOI: 10.1021/nl200758b
[233]
Liu X Hao Z Khalaf E Lee J Y Ronen Y Yoo H Haei Najafabadi D Watanabe K Taniguchi T Vishwanath A Kim P 2020 Nature 583 221 DOI: 10.1038/s41586-020-2458-7
[234]
Lee P A Nagaosa N Wen X G 2006 Rev. Mod. Phys. 78 17 DOI: 10.1103/RevModPhys.78.17
[235]
Keimer B Kivelson S A Norman M R Uchida S Zaanen J 2015 Nature 518 179 DOI: 10.1038/nature14165
[236]
Scalapino D J 2012 Rev. Mod. Phys. 84 1383 DOI: 10.1103/RevModPhys.84.1383
[237]
Gurvitch M Fiory A T 1987 Phys. Rev. Lett. 59 1337 DOI: 10.1103/PhysRevLett.59.1337
[238]
Takagi H Batlogg B Kao H L Kwo J Cava R J Krajewski J J Peck W F 1992 Phys. Rev. Lett. 69 2975 DOI: 10.1103/PhysRevLett.69.2975
[239]
Cooper R A Wang Y Vignolle B Lipscombe O J Hayden S M Tanabe Y Adachi T Koike Y Nohara M Takagi H Proust C Hussey N E 2009 Science 323 603 DOI: 10.1126/science.1165015
[240]
Jin K Butch N P Kirshenbaum K Paglione J Greene R L 2011 Nature 476 73 DOI: 10.1038/nature10308
[241]
Greene R L Mandal P R Poniatowski N R Sarkar T 2020 Annu. Rev. Condens. Matter Phys. 11 213 DOI: 10.1146/annurev-conmatphys-031119-050558
[242]
González J Stauber T 2020 Phys. Rev. Lett. 124 186801 DOI: 10.1103/PhysRevLett.124.186801
[243]
Lawler M J Fujita K Lee J Schmidt A R Kohsaka Y Kim C K Eisaki H Uchida S Davis J C Sethna J P Kim E A 2010 Nature 466 347 DOI: 10.1038/nature09169
[244]
Daou R Chang J LeBoeuf D Cyr-Choinière O Laliberté F Doiron-Leyraud N Ramshaw B J Liang R Bonn D A Hardy W N Taillefer L 2010 Nature 463 519 DOI: 10.1038/nature08716
[245]
da Silva Neto E H Aynajian P Frano A Comin R Schierle E Weschke E Gyenis A Wen J Schneeloch J Xu Z Ono S Gu G Le Tacon M Yazdani A 2014 Science 343 393 DOI: 10.1126/science.1243479
[246]
Sato Y Kasahara S Murayama H Kasahara Y Moon E G Nishizaki T Loew T Porras J Keimer B Shibauchi T Matsuda Y 2017 Nat. Phys. 13 1074 DOI: 10.1038/nphys4205
[247]
Hanaguri T Lupien C Kohsaka Y Lee D H Azuma M Takano M Takagi H Davis J C 2004 Nature 430 1001 DOI: 10.1038/nature02861
[248]
Kohsaka Y Taylor C Fujita K Schmidt A Lupien C Hanaguri T Azuma M Takano M Eisaki H Takagi H Uchida S Davis J C 2007 Science 315 1380 DOI: 10.1126/science.1138584
[249]
Fradkin E Kivelson S A Lawler M J Eisenstein J P Mackenzie A P 2010 Annu. Rev. Condens. Matter Phys. 1 153 DOI: 10.1146/annurev-conmatphys-070909-103925
[250]
Fernandes R M Venderbos J W F 2020 Sci. Adv. 6 eaba8834 DOI: 10.1126/sciadv.aba8834
[251]
Chichinadze D V Classen L Chubukov A V 2020 Phys. Rev. B 101 224513 DOI: 10.1103/PhysRevB.101.224513
[252]
Kozii V Isobe H Venderbos J W F Fu L 2019 Phys. Rev. B 99 144507 DOI: 10.1103/PhysRevB.99.144507
[253]
Yang S L Sobota J A Howard C A Pickard C J Hashimoto M Lu D H Mo S K Kirchmann P S Shen Z X 2014 Nat. Commun. 5 3493 DOI: 10.1038/ncomms4493
[254]
Ichinokura S Sugawara K Takayama A Takahashi T Hasegawa S 2016 ACS Nano 10 2761 DOI: 10.1021/acsnano.5b07848
[255]
Chapman J Su Y Howard C A Kundys D Grigorenko A N Guinea F Geim A K Grigorieva I V Nair R R 2016 Sci. Rep. 6 23254 DOI: 10.1038/srep23254
[256]
Weller T E Ellerby M Saxena S S Smith R P Skipper N T 2005 Nat. Phys. 1 39
[257]
Margine E R Lambert H Giustino F 2016 Sci. Rep. 6 21414 DOI: 10.1038/srep21414
[258]
Wu F 2019 Phys. Rev. B 99 195114 DOI: 10.1103/PhysRevB.99.195114
[259]
Vojta M 2009 Adv. Phys. 58 699 DOI: 10.1080/00018730903122242
[260]
Chang C Z Zhang J Feng X Shen J Zhang Z Guo M Li K Ou Y Wei P Wang L L Ji Z Q Feng Y Ji S Chen X Jia J Dai X Fang Z Zhang S C He K Wang Y Lu L Ma X C Xue Q K 2013 Science 340 167 DOI: 10.1126/science.1234414
[261]
Kou X Guo S T Fan Y Pan L Lang M Jiang Y Shao Q Nie T Murata K Tang J Wang Y He L Lee T K Lee W L Wang K L 2014 Phys. Rev. Lett. 113 137201 DOI: 10.1103/PhysRevLett.113.137201
[262]
Chang C Z Zhao W Kim D Y Zhang H Assaf B A Heiman D Zhang S C Liu C Chan M H W Moodera J S 2015 Nat. Mater. 14 473 DOI: 10.1038/nmat4204
[263]
Lee I Kim C K Lee J Billinge S J L Zhong R Schneeloch J A Liu T Valla T Tranquada J M Gu G Davis J C S 2015 Proc. Natl. Acad. Sci. 112 1316 DOI: 10.1073/pnas.1424322112
[264]
Mogi M Yoshimi R Tsukazaki A Yasuda K Kozuka Y Takahashi K S Kawasaki M Tokura Y 2015 Appl. Phys. Lett. 107 182401 DOI: 10.1063/1.4935075
[265]
Yasuda K Mogi M Yoshimi R Tsukazaki A Takahashi K S Kawasaki M Kagawa F Tokura Y 2017 Science 358 1311 DOI: 10.1126/science.aan5991
[266]
Rozhkov A Sboychakov A Rakhmanov A Nori F 2016 Phys. Rep. 648 1 DOI: 10.1016/j.physrep.2016.07.003
[267]
Castro Neto A H Guinea F Peres N M R Novoselov K S Geim A K 2009 Rev. Mod. Phys. 81 109 DOI: 10.1103/RevModPhys.81.109
[268]
McCann E Koshino M 2013 Rep. Prog. Phys. 76 056503 DOI: 10.1088/0034-4885/76/5/056503
[269]
Burg G W Zhu J Taniguchi T Watanabe K MacDonald A H Tutuc E 2019 Phys. Rev. Lett. 123 197702 DOI: 10.1103/PhysRevLett.123.197702
[270]
Cao Y Rodan-Legrain D Rubies-Bigorda O Park J M Watanabe K Taniguchi T Jarillo-Herrero P 2020 Nature 583 215 DOI: 10.1038/s41586-020-2260-6
[271]
Shen C Chu Y Wu Q Li N Wang S Zhao Y Tang J Liu J Tian J Watanabe K Taniguchi T Yang R Meng Z Y Shi D Yazyev O V Zhang G 2020 Nat. Phys. 16 520 DOI: 10.1038/s41567-020-0825-9
[272]
He M Li Y Cai J Liu Y Watanabe K Taniguchi T Xu X Yankowitz M 2020 Nat. Phys. DOI: 10.1038/s41567-020-1030-6
[273]
Adak P C Sinha S Ghorai U Sangani L D V Watanabe K Taniguchi T Sensarma R Deshmukh M M 2020 Phys. Rev. B 101 125428 DOI: 10.1103/PhysRevB.101.125428
[274]
Chebrolu N R Chittari B L Jung J 2019 Phys. Rev. B 99 235417 DOI: 10.1103/PhysRevB.99.235417
[275]
Choi Y W Choi H J 2019 Phys. Rev. B 100 201402(R) DOI: 10.1103/PhysRevB.100.201402
[276]
Lee J Y Khalaf E Liu S Liu X Hao Z Kim P Vishwanath A 2019 Nat. Commun. 10 5333 DOI: 10.1038/s41467-019-12981-1
[277]
Wu F Das Sarma S 2020 Phys. Rev. B 101 155149 DOI: 10.1103/PhysRevB.101.155149
[278]
Culchac F J Del Grande R Capaz R B Chico L Morell E S 2020 Nanoscale 12 5014 DOI: 10.1039/C9NR10830K
[279]
Samajdar R Scheurer M S 2020 Phys. Rev. B 102 064501 DOI: 10.1103/PhysRevB.102.064501
[280]
Haddadi F Wu Q Kruchkov A J Yazyev O V 2020 Nano Lett. 20 2410 DOI: 10.1021/acs.nanolett.9b05117
[281]
Kerelsky A Rubio-Verdú C Xian L Kennes D M Halbertal D Finney N Song L Turkel S Wang L Watanabe K Taniguchi T Hone J Dean C Basov D Rubio A Pasupathy A N 2019 arXiv:1911.00007
[282]
Lee K Utama M Kahn S Samudrala A Leconte N Yang B Wang S Watanabe K Taniguchi T Zhang G Weber-Bargioni A Crommie M Ashby P D Jung J Wang F Zettl A 2020 arXiv:2006.04000
[283]
Halbertal D Finney N R Sunku S S Kerelsky A Rubio-Verdú C Shabani S Xian L Carr S Chen S Zhang C Wang L Gonzalez-Acevedo D McLeod A S Rhodes D Watanabe K Taniguchi T Kaxiras E Dean C R Hone J C Pasupathy A N Kennes D M Rubio A Basov D N 2020 arXiv:2008.04835
[284]
Min H MacDonald A H 2008 Prog. Theor. Phys. Supp. 176 227 DOI: 10.1143/PTPS.176.227
[285]
Latil S Henrard L 2006 Phys. Rev. Lett. 97 036803 DOI: 10.1103/PhysRevLett.97.036803
[286]
Mak K F Shan J Heinz T F 2010 Phys. Rev. Lett. 104 176404 DOI: 10.1103/PhysRevLett.104.176404
[287]
Yan J A Ruan W Y Chou M Y 2011 Phys. Rev. B 83 245418 DOI: 10.1103/PhysRevB.83.245418
[288]
Wang W Shi Y Zakharov A A Syväjärvi M Yakimova R Uhrberg R I G Sun J 2018 Nano Lett. 18 5862 DOI: 10.1021/acs.nanolett.8b02530
[289]
Yin L J Shi L J Li S Y Zhang Y Guo Z H He L 2019 Phys. Rev. Lett. 122 146802 DOI: 10.1103/PhysRevLett.122.146802
[290]
Bao W Jing L Velasco J Lee Y Liu G Tran D Standley B Aykol M Cronin S B Smirnov D Koshino M McCann E Bockrath M Lau C N 2011 Nat. Phys. 7 948 DOI: 10.1038/nphys2103
[291]
Lui C H Li Z Mak K F Cappelluti E Heinz T F 2011 Nat. Phys. 7 944 DOI: 10.1038/nphys2102
[292]
Scherer M M Uebelacker S Scherer D D Honerkamp C 2012 Phys. Rev. B 86 155415 DOI: 10.1103/PhysRevB.86.155415
[293]
Yin L J Wang W X Zhang Y Ou Y Y Zhang H T Shen C Y He L 2017 Phys. Rev. B 95 081402(R) DOI: 10.1103/PhysRevB.95.081402
[294]
Lee Y Che S Velasco Jjr. Tran D Baima J Mauri F Calandra M Bockrath M Lau C N 2019 arXiv:1911.04450
[295]
Chen G Jiang L Wu S Lyu B Li H Chittari B L Watanabe K Taniguchi T Shi Z Jung J Zhang Y Wang F 2019 Nat. Phys. 15 237 DOI: 10.1038/s41567-018-0387-2
[296]
Chen G Sharpe A L Fox E J Zhang Y H Wang S Jiang L Lyu B Li H Watanabe K Taniguchi T Shi Z Senthil T Goldhaber-Gordon D Zhang Y Wang F 2020 Nature 579 56 DOI: 10.1038/s41586-020-2049-7
[297]
Chittari B L Chen G Zhang Y Wang F Jung J 2019 Phys. Rev. Lett. 122 016401 DOI: 10.1103/PhysRevLett.122.016401
[298]
Zhang Y H Senthil T 2019 Phys. Rev. B 99 205150 DOI: 10.1103/PhysRevB.99.205150
[299]
Pantaleon P A Cea T Brown R Walet N R Guinea F 2020 arXiv:2003.05050
[300]
Scheurer M S Samajdar R 2020 Phys. Rev. Res. 2 033062 DOI: 10.1103/PhysRevResearch.2.033062
[301]
Zhang Y-H Senthil T 2020 Phys. Rev. B 102 115127 DOI: 10.1103/PhysRevB.102.115127
[302]
Qiao J B He L 2014 Phys. Rev. B 90 075410 DOI: 10.1103/PhysRevB.90.075410
[303]
Chen S He M Zhang Y H Hsieh V Fei Z Watanabe K Taniguchi T Cobden D H Xu X Dean C R Yankowitz M 2020 arXiv:2004.11340
[304]
Polshyn H Zhu J Kumar M A Zhang Y Yang F Tschirhart C L Serlin M Watanabe K Taniguchi T MacDonald A H Young A F 2020 arXiv:2004.11353
[305]
Shi Y Xu S Ezzi M M A Balakrishnan N Garcia-Ruiz A Tsim B Mullan C Barrier J Xin N Piot B A Taniguchi T Watanabe K Carvalho A Mishchenko A Geim A K Fal’ko V I Adam S Neto A H C Novoselov K S 2020 arXiv:2004.12414
[306]
Ma Z Li S Zheng Y W Xiao M M Jiang H Gao J H Xie X C 2019 arXiv:1905.00622
[307]
Park Y Chittari B L Jung J 2020 Phys. Rev. B 102 035411 DOI: 10.1103/PhysRevB.102.035411
[308]
Rademaker L Protopopov I V Abanin D A 2020 Phys. Rev. Res. 2 033150 DOI: 10.1103/PhysRevResearch.2.033150
[309]
Li X Wu F MacDonald A H 2019 arXiv:1907.12338
[310]
Carr S Li C Zhu Z Kaxiras E Sachdev S Kruchkov A 2020 Nano Lett. 20 3030 DOI: 10.1021/acs.nanolett.9b04979
[311]
Mora C Regnault N Bernevig B A 2019 Phys. Rev. Lett. 123 026402 DOI: 10.1103/PhysRevLett.123.026402
[312]
Tsai K T Zhang X Zhu Z Luo Y Carr S Luskin M Kaxiras E Wang K 2019 arXiv:1912.03375
[313]
Zhu Z Carr S Massatt D Luskin M Kaxiras E 2020 Phys. Rev. Lett. 125 116404 DOI: 10.1103/PhysRevLett.125.116404
[314]
Zuo W J Qiao J B Ma D L Yin L J Sun G Zhang J Y Guan L Y He L 2018 Phys. Rev. B 97 035440 DOI: 10.1103/PhysRevB.97.035440
[315]
Liu J Ma Z Gao J Dai X 2019 Phys. Rev. X 9 031021 DOI: 10.1103/PhysRevX.9.031021
[316]
Zhang Y H Mao D Cao Y Jarillo-Herrero P Senthil T 2019 Phys. Rev. B 99 075127 DOI: 10.1103/PhysRevB.99.075127
[317]
Ma Z Li S Xiao M M Zheng Y W Lu M Liu H Gao J H Xie X 2020 arXiv:2001.07995
[318]
Decker R Wang Y Brar V W Regan W Tsai H Z Wu Q Gannett W Zettl A Crommie M F 2011 Nano Lett. 11 2291 DOI: 10.1021/nl2005115
[319]
Xue J Sanchez-Yamagishi J Bulmash D Jacquod P Deshpande A Watanabe K Taniguchi T Jarillo-Herrero P LeRoy B J 2011 Nat. Mater. 10 282 DOI: 10.1038/nmat2968
[320]
Yankowitz M Xue J LeRoy B J 2014 J. Phys.: Condens. Matter 26 303201 DOI: 10.1088/0953-8984/26/30/303201
[321]
Dean C R Young A F Meric I Lee C Wang L Sorgenfrei S Watanabe K Taniguchi T Kim P Shepard K L Hone J 2010 Nat. Nanotech. 5 722 DOI: 10.1038/nnano.2010.172
[322]
Kim Y Balram A C Taniguchi T Watanabe K Jain J K Smet J H 2019 Nat. Phys. 15 154 DOI: 10.1038/s41567-018-0355-x
[323]
Zhou H Polshyn H Taniguchi T Watanabe K Young A F 2020 Nat. Phys. 16 154 DOI: 10.1038/s41567-019-0729-8
[324]
Yin J Slizovskiy S Cao Y Hu S Yang Y Lobanova I Piot B A Son S K Ozdemir S Taniguchi T Watanabe K Novoselov K S Guinea F Geim A K Fal’ko V Mishchenko A 2019 Nat. Phys. 15 437 DOI: 10.1038/s41567-019-0427-6
[325]
Amet F Bestwick A J Williams J R Balicas L Watanabe K Taniguchi T Goldhaber-Gordon D 2015 Nat. Commun. 6 5838 DOI: 10.1038/ncomms6838
[326]
Chiappini F Wiedmann S Novoselov K Mishchenko A Geim A K Maan J C Zeitler U 2015 Phys. Rev. B 92 201412(R) DOI: 10.1103/PhysRevB.92.201412
[327]
Young A F Sanchez-Yamagishi J D Hunt B Choi S H Watanabe K Taniguchi T Ashoori R C Jarillo-Herrero P 2014 Nature 505 528 DOI: 10.1038/nature12800
[328]
Lee D S Skákalová V Weitz R T von Klitzing K Smet J H 2012 Phys. Rev. Lett. 109 056602 DOI: 10.1103/PhysRevLett.109.056602
[329]
Yankowitz M Xue J Cormode D Sanchez-Yamagishi J D Watanabe K Taniguchi T Jarillo-Herrero P Jacquod P LeRoy B J 2012 Nat. Phys. 8 382 DOI: 10.1038/nphys2272
[330]
Gorbachev R V Song J C W Yu G L Kretinin A V Withers F Cao Y Mishchenko A Grigorieva I V Novoselov K S Levitov L S Geim A K 2014 Science 346 448 DOI: 10.1126/science.1254966
[331]
Wang E Lu X Ding S Yao W Yan M Wan G Deng K Wang S Chen G Ma L Jung J Fedorov A V Zhang Y Zhang G Zhou S 2016 Nat. Phys. 12 1111 DOI: 10.1038/nphys3856
[332]
Chen Z G Shi Z Yang W Lu X Lai Y Yan H Wang F Zhang G Li Z 2014 Nat. Commun. 5 4461 DOI: 10.1038/ncomms5461
[333]
Hunt B Sanchez-Yamagishi J D Young A F Yankowitz M LeRoy B J Watanabe K Taniguchi T Moon P Koshino M Jarillo-Herrero P Ashoori R C 2013 Science 340 1427 DOI: 10.1126/science.1237240
[334]
Ponomarenko L A Gorbachev R V Yu G L Elias D C Jalil R Patel A A Mishchenko A Mayorov A S Woods C R Wallbank J R Mucha-Kruczynski M Piot B A Potemski M Grigorieva I V Novoselov K S Guinea F Fal’ko V I Geim A K 2013 Nature 497 594 DOI: 10.1038/nature12187
[335]
Dean C R Wang L Maher P Forsythe C Ghahari F Gao Y Katoch J Ishigami M Moon P Koshino M Taniguchi T Watanabe K Shepard K L Hone J Kim P 2013 Nature 497 598 DOI: 10.1038/nature12186
[336]
Ni G X Wang H Wu J S Fei Z Goldflam M D Keilmann F Özyilmaz B Castro Neto A H Xie X M Fogler M M Basov D N 2015 Nat. Mater. 14 1217 DOI: 10.1038/nmat4425
[337]
Dai S Ma Q Liu M K Andersen T Fei Z Goldflam M D Wagner M Watanabe K Taniguchi T Thiemens M Keilmann F Janssen G C A M Zhu S E Jarillo-Herrero P Fogler M M Basov D N 2015 Nat. Nanotech. 10 682 DOI: 10.1038/nnano.2015.131
[338]
Wang L Zihlmann S Liu M H Makk P Watanabe K Taniguchi T Baumgartner A Schönenberger C 2019 Nano Lett. 19 2371 DOI: 10.1021/acs.nanolett.8b05061
[339]
Finney N R Yankowitz M Muraleetharan L Watanabe K Taniguchi T Dean C R Hone J 2019 Nat. Nanotech. 14 1029 DOI: 10.1038/s41565-019-0547-2
[340]
Kim K Yankowitz M Fallahazad B Kang S Movva H C P Huang S Larentis S Corbet C M Taniguchi T Watanabe K Banerjee S K LeRoy B J Tutuc E 2016 Nano Lett. 16 1989 DOI: 10.1021/acs.nanolett.5b05263
[341]
Ribeiro-Palau R Zhang C Watanabe K Taniguchi T Hone J Dean C R 2018 Science 361 690 DOI: 10.1126/science.aat6981
[342]
Yu L Lee Y H Ling X Santos E J G Shin Y C Lin Y Dubey M Kaxiras E Kong J Wang H Palacios T 2014 Nano Lett. 14 3055 DOI: 10.1021/nl404795z
[343]
Massicotte M Schmidt P Vialla F Schädler K G Reserbat-Plantey A Watanabe K Taniguchi T Tielrooij K J Koppens F H L 2016 Nat. Nanotech. 11 42 DOI: 10.1038/nnano.2015.227
[344]
Roy K Padmanabhan M Goswami S Sai T P Ramalingam G Raghavan S Ghosh A 2013 Nat. Nanotech. 8 826 DOI: 10.1038/nnano.2013.206
[345]
Kośmider K González J W Fernández-Rossier J 2013 Phys. Rev. B 88 245436 DOI: 10.1103/PhysRevB.88.245436
[346]
Liu G B Shan W Y Yao Y Yao W Xiao D 2013 Phys. Rev. B 88 085433 DOI: 10.1103/PhysRevB.88.085433
[347]
Yuan H Bahramy M S Morimoto K Wu S Nomura K Yang B J Shimotani H Suzuki R Toh M Kloc C Xu X Arita R Nagaosa N Iwasa Y 2013 Nat. Phys. 9 563 DOI: 10.1038/nphys2691
[348]
Zeng H Liu G B Dai J Yan Y Zhu B He R Xie L Xu S Chen X Yao W Cui X 2013 Sci. Rep. 3 1608 DOI: 10.1038/srep01608
[349]
Zhang Y Chang T R Zhou B Cui Y T Yan H Liu Z Schmitt F Lee J Moore R Chen Y Lin H Jeng H T Mo S K Hussain Z Bansil A Shen Z X 2014 Nat. Nanotech. 9 111 DOI: 10.1038/nnano.2013.277
[350]
Zhu Z Y Cheng Y C Schwingenschlögl U 2011 Phys. Rev. B 84 153402 DOI: 10.1103/PhysRevB.84.153402
[351]
Yang B Tu M F Kim J Wu Y Wang H Alicea J Wu R Bockrath M Shi J 2016 2D Mater. 3 031012 DOI: 10.1088/2053-1583/3/3/031012
[352]
Avsar A Tan J Y Taychatanapat T Balakrishnan J Koon G K W Yeo Y Lahiri J Carvalho A Rodin A S O’Farrell E C T Eda G Castro Neto A H Özyilmaz B 2014 Nat. Commun. 5 4875 DOI: 10.1038/ncomms5875
[353]
Yang B Lohmann M Barroso D Liao I Lin Z Liu Y Bartels L Watanabe K Taniguchi T Shi J 2017 Phys. Rev. B 96 041409(R) DOI: 10.1103/PhysRevB.96.041409
[354]
Antonio Benítez L Sierra J F Savero Torres W Arrighi A Bonell F Costache M V Valenzuela S O 2018 Nat. Phys. 14 303 DOI: 10.1038/s41567-017-0019-2
[355]
Ghiasi T S Ingla-Aynés J Kaverzin A A van Wees B J 2017 Nano Lett. 17 7528 DOI: 10.1021/acs.nanolett.7b03460
[356]
Omar S Madhushankar B N van Wees B J 2019 Phys. Rev. B 100 155415 DOI: 10.1103/PhysRevB.100.155415
[357]
Wang Z Ki D K Khoo J Y Mauro D Berger H Levitov L S Morpurgo A F 2016 Phys. Rev. X 6 041020 DOI: 10.1103/PhysRevX.6.041020
[358]
Zihlmann S Cummings A W Garcia J H Kedves M Watanabe K Taniguchi T Schönenberger C Makk P 2018 Phys. Rev. B 97 075434 DOI: 10.1103/PhysRevB.97.075434
[359]
Wakamura T Reale F Palczynski P Guéron S Mattevi C Bouchiat H 2018 Phys. Rev. Lett. 120 106802 DOI: 10.1103/PhysRevLett.120.106802
[360]
Island J O Cui X Lewandowski C Khoo J Y Spanton E M Zhou H Rhodes D Hone J C Taniguchi T Watanabe K Levitov L S Zaletel M P Young A F 2019 Nature 571 85 DOI: 10.1038/s41586-019-1304-2
[361]
Zaletel M P Khoo J Y 2019 arXiv:1901.01294
[362]
Xi X Wang Z Zhao W Park J H Law K T Berger H Forró L Shan J Mak K F 2016 Nat. Phys. 12 139 DOI: 10.1038/nphys3538
[363]
Guillamón I Suderow H Vieira S Cario L Diener P Rodière P 2008 Phys. Rev. Lett. 101 166407 DOI: 10.1103/PhysRevLett.101.166407
[364]
Galvis J A Rodière P Guillamon I Osorio M R Rodrigo J G Cario L Navarro-Moratalla E Coronado E Vieira S Suderow H 2013 Phys. Rev. B 87 094502 DOI: 10.1103/PhysRevB.87.094502
[365]
Sipos B Kusmartseva A F Akrap A Berger H Forró L Tutiš E 2008 Nat. Mater. 7 960 DOI: 10.1038/nmat2318
[366]
Lu J M Zheliuk O Leermakers I Yuan N F Q Zeitler U Law K T Ye J T 2015 Science 350 1353 DOI: 10.1126/science.aab2277
[367]
de la Barrera S C Sinko M R Gopalan D P Sivadas N Seyler K L Watanabe K Taniguchi T Tsen A W Xu X Xiao D Hunt B M 2018 Nat. Commun. 9 1427 DOI: 10.1038/s41467-018-03888-4
[368]
Gani Y S Steinberg H Rossi E 2019 Phys. Rev. B 99 235404 DOI: 10.1103/PhysRevB.99.235404
[369]
Li J Leng H B Fu H Watanabe K Taniguchi T Liu X Liu C X Zhu J 2020 Phys. Rev. B 101 195405 DOI: 10.1103/PhysRevB.101.195405
[1] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[2] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[3] Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊). Chin. Phys. B, 2021, 30(1): 017304.
[4] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[5] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[6] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[7] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[8] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[9] Electrical and thermoelectric study of two-dimensional crystal of NbSe2
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松). Chin. Phys. B, 2020, 29(8): 087402.
[10] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[11] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
Minsi Li(李敏斯), Jiahong Gu(古家虹), Long Du(杜龙), Hongwei Zhong(钟红伟), Lijuan Zhou(周丽娟), Qinghua Chen(陈庆华). Chin. Phys. B, 2020, 29(3): 037401.
[12] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[13] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[14] A review of experimental advances in twisted graphene moirè superlattice
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2020, 29(12): 128104.
[15] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
No Suggested Reading articles found!