Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097201    DOI: 10.1088/1674-1056/aba9cf

Temperature-switching logic in MoS2 single transistors

Xiaozhang Chen(陈孝章)1, Lehua Gu(顾乐华)2, Lan Liu(刘岚)1, Huawei Chen(陈华威)1, Jingyu Li(栗敬俣)1, Chunsen Liu(刘春森)3, Peng Zhou(周鹏)1
1 The State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433, China;
2 Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures(Ministry of Education), and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China;
3 School of Computer Science, Fudan University, Shanghai 200433, China

Due to their unique characteristics, two-dimensional (2D) materials have drawn great attention as promising candidates for the next generation of integrated circuits, which generate a calculation unit with a new working mechanism, called a logic transistor. To figure out the application prospects of logic transistors, exploring the temperature dependence of logic characteristics is important. In this work, we explore the temperature effect on the electrical characteristic of a logic transistor, finding that changes in temperature cause transformation in the calculation: logical output converts from ‘AND’ at 10 K to ‘OR’ at 250 K. The transformation phenomenon of temperature regulation in logical output is caused by energy band which decreases with increasing temperature. In the experiment, the indirect band gap of MoS2 shows an obvious decrease from 1.581 eV to 1.535 eV as the temperature increases from 10 K to 250 K. The change of threshold voltage with temperature is consistent with the energy band, which confirms the theoretical analysis. Therefore, as a promising material for future integrated circuits, the demonstrated characteristic of 2D transistors suggests possible application for future functional devices.

Keywords:  molybdenum disulfide (MoS2)      logic      temperature dependence      mobility  
Received:  17 June 2020      Revised:  07 July 2020      Accepted manuscript online:  28 July 2020
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  81.05.Zx (New materials: theory, design, and fabrication)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 61925402, 61851402, and 61734003), Science and Technology Commission of Shanghai Municipality, China (Grant No. 19JC1416600), National Key Research and Development Program of China (Grant No. 2017YFB0405600), and Shanghai Education Development Foundation and Shanghai Municipal Education Commission Shuguang Program, China (Grant No. 18SG01).

Corresponding Authors:  Chunsen Liu, Peng Zhou     E-mail:;

Cite this article: 

Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏) Temperature-switching logic in MoS2 single transistors 2020 Chin. Phys. B 29 097201

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J and Hu C 2016 Science 354 99
[3] Novoselov K, Mishchenko A, Carvalho A and Neto A C 2016 Science 353 aac9439
[4] Huang M, Li S, Zhang Z, Xiong X, Li X and Wu Y 2017 Nat. Nanotechnol. 12 1148
[5] Zhang Z, Wang Z, Shi T, Bi C, Rao F, Cai Y, Liu Q, Wu H and Zhou P 2020 InfoMat 261 290
[6] Wachter S, Polyushkin D K, Bethge O and Mueller T 2017 Nat. Commun. 8 14948
[7] Liu C, Chen H, Hou X, Zhang H, Han J, Jiang Y G, Zeng X, Zhang D W and Zhou P 2019 Nat. Nanotechnol 14 662
[8] Yang Z, Wu Z, Lyu Y and Hao J 2019 InfoMat 1 98
[9] Yu Z, Ong Z Y, Li S, Xu J B, Zhang G, Zhang Y W, Shi Y and Wang X 2017 Adv. Funct. Mater. 27 1604093
[10] Radisavljevic B, Radenovic A, Brivio J, Giacometti i V and Kis A 2011 Nat. Nanotechnol. 6 147
[11] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385
[12] Jin C, Kim J, Suh J, Shi Z, Chen B, Fan X, Kam M, Watanabe K, Taniguchi T and Tongay S 2017 Nat. Phys. 13 127
[13] Plechinger G, Schrettenbrunner F X, Eroms J, Weiss D, Schueller C and Korn T 2012 Phys. Status. Solidi. Rapid. Res. Lett. 6 126
[14] Hannewald K, Stojanović V, Schellekens J, Bobbert P, Kresse G and Hafner J 2004 Phys. Rev. B 69 075211
[15] Das S, Chen H Y, Penumatcha A V and Appenzeller J 2012 Nano Lett. 13 100
[16] Neamen D A 2012 Semiconductor physics and devices: basic principles (New York: McGraw-Hill)
[17] Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
[1] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[2] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[3] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[4] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[5] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[6] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[7] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[8] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[9] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[10] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[11] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[12] Characterization of a nano line width reference material based on metrological scanning electron microscope
Fang Wang(王芳), Yushu Shi(施玉书), Wei Li(李伟), Xiao Deng(邓晓), Xinbin Cheng(程鑫彬), Shu Zhang(张树), and Xixi Yu(余茜茜). Chin. Phys. B, 2022, 31(5): 050601.
[13] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[14] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[15] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[3] Yang Shu-Zheng, Lin Li-Bin. The quantum nonthermal effect of a nonstationary Kerr-Newman black hole and the average range of the effective particles[J]. Chin. Phys., 2002, 11(6): 619 -623 .
[4] Fang Tong-Zhen, Jiang Nan, Wang Long. Calculation of ion energy distributions of argon excimer ions generated in helicon plasma[J]. Chin. Phys., 2005, 14(11): 2256 -2261 .
[5] Chen Li-Bing, Lu Hong, Liu Yu-Hua. Implementing remotely a single-qubit rotation operation by three-qubit entanglement[J]. Chin. Phys., 2005, 14(7): 1323 -1328 .
[6] Chen Yu(陈玉), Han An-Jia(韩安家), Ke Jian-Hong(柯见洪), and Lin Zhen-Quan(林振权). Aggregation processes with catalysis-driven monomer birth/death[J]. Chin. Phys., 2006, 15(8): 1896 -1902 .
[7] Li Cheng-Yue(李承跃), J. P. Allain, and Deng Bai-Quan(邓柏权). Effects of a liquid lithium curtain as the first wall in a fusion reactor plasma[J]. Chin. Phys., 2007, 16(11): 3312 -3318 .
[8] Zhou Jian-Jun(周建军), Wen Bo(文博), Jiang Ruo-Lian(江若琏), Liu Cheng-Xiang(刘成祥), Ji Xiao-Li(姬小利), Xie Zi-Li(谢自力), Chen Dun-Jun(陈敦军), Han Ping(韩平), Zhang Rong(张荣), and Zheng You-Dou(郑有炓). Photoresponse of the In0.3 Ga0.7 N metal--insulator--semiconductor photodetectors[J]. Chin. Phys., 2007, 16(7): 2120 -2122 .
[9] Li Li-Ping(李利平), Zhang Li-Yan (张利彦), Song Pei-Jun(宋佩君), Xie Xiao-Tao(谢小涛), and Li Wei-Bin(李伟斌) . The spatial properties of atomic Raman--Nath diffraction[J]. Chin. Phys., 2007, 16(8): 2428 -2432 .
[10] Zou Li-Yong(邹立勇), Bai Jing-Song(柏劲松), Li Bu-Yang(李步阳),Tan Duo-Wang(谭多望), Li Ping(李平), and Liu Cang-Li(刘仓理) . Vertical rotation effect on turbulence characteristics in an open channel flow[J]. Chin. Phys. B, 2008, 17(3): 1034 -1040 .