|
|
Intercalation of van der Waals layered materials: A route towards engineering of electron correlation |
Jingjing Niu(牛晶晶)1,2, Wenjie Zhang(章文杰)1,2, Zhilin Li(李治林)1,2, Sixian Yang(杨嗣贤)3, Dayu Yan(闫大禹)4, Shulin Chen(陈树林)5, Zhepeng Zhang(张哲朋)6, Yanfeng Zhang(张艳锋)6, Xinguo Ren(任新国)3, Peng Gao(高鹏)2,5,7, Youguo Shi(石友国)4, Dapeng Yu(俞大鹏)1,2,8, Xiaosong Wu(吴孝松)1,2,8 |
1 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Beijing Key Laboratory of Quantum Devices, Peking University, Beijing 100871, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
3 CAS Key Laboratory of Quantum Information, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
4 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
5 Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China;
6 Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
7 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
8 Department of Physics, Southern University of Science and Technology of China, Shenzhen 518055, China |
|
|
Abstract Being parent materials of two-dimensional (2D) crystals, van der Waals layered materials have received revived interest. In most 2D materials, the interaction between electrons is negligible. Introducing the interaction can give rise to a variety of exotic properties. Here, via intercalating a van der Waals layered compound VS2, we find evidence for electron correlation by extensive magnetic, thermal, electrical, and thermoelectric characterizations. The low temperature Sommerfeld coefficient is 64 mJ·K-2·mol-1 and the Kadowaki-Woods ratio rKW~0.20a0. Both supports an enhancement of the electron correlation. The temperature dependences of the resistivity and thermopower indicate an important role played by the Kondo effect. The Kondo temperature TK is estimated to be around 8 K. Our results suggest intercalation as a potential means to engineer the electron correlation in van der Waals materials, as well as 2D materials.
|
Received: 11 July 2020
Revised: 28 July 2020
Accepted manuscript online: 01 August 2020
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
75.30.Mb
|
(Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)
|
|
71.20.Tx
|
(Fullerenes and related materials; intercalation compounds)
|
|
Fund: Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CBA01603, 2016YFA0300600, and 2016YFA0300903), the National Natural Science Foundation of China (Grant Nos. 11574005, 11774009, 11222436, and 11574283), and the National Postdoctoral Program for Innovative Talents of China (Grant No. BX201700012) funded by China Postdoctoral Science Foundation. |
Corresponding Authors:
Xiaosong Wu
E-mail: xswu@pku.edu.cn
|
Cite this article:
Jingjing Niu(牛晶晶), Wenjie Zhang(章文杰), Zhilin Li(李治林), Sixian Yang(杨嗣贤), Dayu Yan(闫大禹), Shulin Chen(陈树林), Zhepeng Zhang(张哲朋), Yanfeng Zhang(张艳锋), Xinguo Ren(任新国), Peng Gao(高鹏), Youguo Shi(石友国), Dapeng Yu(俞大鹏), Xiaosong Wu(吴孝松) Intercalation of van der Waals layered materials: A route towards engineering of electron correlation 2020 Chin. Phys. B 29 097104
|
[1] |
Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
|
[2] |
Stewart G R 1984 Rev. Mod. Phys. 56 755
|
[3] |
Lee P A 2008 Rep. Prog. Phys. 71 012501
|
[4] |
Doniach S 1977 Physica B+C 91 231
|
[5] |
Ott H R, Rudigier H, Delsing P and Fisk Z 1984 Phys. Rev. Lett. 52 1551
|
[6] |
Fisk Z, Ott H R, Rice T M and Smith J L 1986 Nature 320 124
|
[7] |
Schröder A, Aeppli G, Coldea R, Adams M, Stockert O, Löhneysen H, Bucher E, Ramazashvili R and Coleman P 2000 Nature 407 351
|
[8] |
Park T, Ronning F, Yuan H Q, Salamon M B, Movshovich R, Sarrao J L and Thompson J D 2006 Nature 440 65
|
[9] |
Yang Y F, Fisk Z, Lee H O, Thompson J D and Pines D 2008 Nature 454 611
|
[10] |
Si Q and Steglich F 2010 Science 329 1161
|
[11] |
Kondo S, Johnston D C, Swenson C A, Borsa F, Mahajan A V, Miller L L, Gu T, Goldman A I, Maple M B, Gajewski D A, Freeman E J, Dilley N R, Dickey R P, Merrin J, Kojima K, Luke G M, Uemura Y J, Chmaissem O and Jorgensen J D 1997 Phys. Rev. Lett. 78 3729
|
[12] |
Hossain Z, Hamashima S, Umeo K, Takabatake T, Geibel C and Steglich F 2000 Phys. Rev. B 62 8950
|
[13] |
Cheng J G, Zhou J S, Yang Y F, Zhou H D, Matsubayashi K, Uwatoko Y, MacDonald A and Goodenough J B 2013 Phys. Rev. Lett. 111 176403
|
[14] |
Marseglia E A 1983 Int. Rev. Phys. Chem. 3 177
|
[15] |
Friend R and Yoffe A 1987 Adv. Phys. 36 1
|
[16] |
Dresselhaus M S and Dresselhaus G 2002 Adv. Phys. 51 1
|
[17] |
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
|
[18] |
Jung Y, Zhou Y and Cha J J 2016 Inorg. Chem. Front. 3 452
|
[19] |
Silbernagel B G, Levy R B and Gamble F R 1975 Phys. Rev. B 11 4563
|
[20] |
Fujimori A, Saeki M and Nozaki H 1991 Phys. Rev. B 44 163
|
[21] |
Murphy D W, Cros C, Salvo F J D and Waszczak J V 1977 Inorg. Chem. 16 3027
|
[22] |
Nozaki H, Umehara M, Ishizawa Y, Saeki M, Mizoguchi T and Nakahira M 1978 J. Phys. Chem. Solids 39 851
|
[23] |
Vries A D and Haas C 1973 J. Phys. Chem. Solids 34 651
|
[24] |
Nishihara H, Yasuoka H, Oka Y, Kosuge K and Kachi S 1977 J. Phys. Soc. Jpn. 42 787
|
[25] |
Kitaoka Y and Yasuoka H 1980 J. Phys. Soc. Jpn. 48 1949
|
[26] |
Katsuta H, McLellan R B and Suzuki K 1979 J. Phys. Chem. Solids 40 1089
|
[27] |
Nakanishi M, Yoshimura K, Kosuge K, Goto T, Fujii T and Takada J 2000 J. Magn. Magn. Mater. 221 301
|
[28] |
Funahashi S, Nozaki H and Kawada I 1981 J. Phys. Chem. Solids 42 1009
|
[29] |
Niu J, Yan B, Ji Q, Liu Z, Li M, Gao P, Zhang Y, Yu D and Wu X 2017 Phys. Rev. B 96 075402
|
[30] |
Barua S, Hatnean M C, Lees M R and Balakrishnan G 2017 Sci. Rep. 7 10964
|
[31] |
Liu H, Xue Y, Shi J A, Guzman R A, Zhang P, Zhou Z, He Y, Bian C, Wu L, Ma R et al. 2019 Nano Lett. 19 8572
|
[32] |
Hossain Z, Ohmoto H, Umeo K, Iga F, Suzuki T, Takabatake T, Takamoto N and Kindo K 1999 Phys. Rev. B 60 10383
|
[33] |
Li S Y, Taillefer L, Hawthorn D G, Tanatar M A, Paglione J, Sutherland M, Hill R W, Wang C H and Chen X H 2004 Phys. Rev. Lett. 93 056401
|
[34] |
Andersen N H and Smith H 1979 Phys. Rev. B 19 384
|
[35] |
Lashley J C, Stevens R, Crawford M K, Boerio-Goates J, Woodfield B F, Qiu Y, Lynn J W, Goddard P A and Fisher R A 2008 Phys. Rev. B 78 104406
|
[36] |
Falkowski M, Kowalczyk A and Toliński T 2011 J. Alloys Compd. 509 6135
|
[37] |
Toliński T, Kowalczyk A, Szewczyk A and Gutowska M 2006 J. Phys.: Condens. Matter 18 3435
|
[38] |
Svoboda P, Vejpravová J, Kim-Ngan N T and Kaysel F 2004 J. Magnet. Magnet. Mater. 272–276 595
|
[39] |
Schotte K and Schotte U 1975 Phys. Lett. A 55 38
|
[40] |
Bredl C D, Steglich F and Schotte K D 1978 Zeitschrift Für Physik B Condensed Matter 29 327
|
[41] |
Kawabata J, Takabatake T, Umeo K and Muro Y 2014 Phys. Rev. B 89 094404
|
[42] |
Hodovanets H, Bud’ko S L, Straszheim W E, Taufour V, Mun E D, Kim H, Flint R and Canfield P C 2015 Phys. Rev. Lett. 114 236601
|
[43] |
Mattis D C 1985 Theory of Magnetism Ⅱ: Thermodynamics and statistical mechanics (Berlin and New York: Springer-Verlag) p. 22
|
[44] |
Blanco J A, Gignoux D and Schmitt D 1991 Phys. Rev. B 43 13145
|
[45] |
Blanco J A, de Podesta M, Espeso J I, Gomez Sal J C, Lester C, McEwen K A, Patrikios N and Rodriguez Fernandez J 1994 Phys. Rev. B 49 15126
|
[46] |
Gauzzi A, Sellam A, Rousse G, Klein Y, Taverna D, Giura P, Calandra M, Loupias G, Gozzo F, Gilioli E, Bolzoni F, Allodi G, De Renzi R, Calestani G L and Roy P 2014 Phys. Rev. B 89 235125
|
[47] |
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
|
[48] |
Beck P A and Claus H 1970 J. Res. Nat. Bur. Stand. A 74 449
|
[49] |
Savrasov S Y and Savrasov D Y 1996 Phys. Rev. B 54 16487
|
[50] |
Pikul A P, Kaczorowski D, Plackowski T, Czopnik A, Michor H, Bauer E, Hilscher G, Rogl P and Grin Y 2003 Phys. Rev. B 67 224417
|
[51] |
Yang Y F and David P 2012 Proc. Natl. Acad. Sci. USA 109 E3060
|
[52] |
Yang Y F 2016 Rep. Prog. Phys. 79 074501
|
[53] |
Becker B, Ramakrishnan S, Menovsky A A, Nieuwenhuys G J and Mydosh J A 1997 Phys. Rev. Lett. 78 1347
|
[54] |
Mentink S A M, Mason T E, Süllow S, Nieuwenhuys G J, Menovsky A A, Mydosh J A and Perenboom J A A J 1996 Phys. Rev. B 53 R6014
|
[55] |
Andersen N H 1980 Crystalline electric field and structural effects in f-electron systems (New York and London: Plenum) p. 375
|
[56] |
Raquet B, Viret M, Sondergard E, Cespedes O and Mamy R 2002 Phys. Rev. B 66 024433
|
[57] |
Madduri P V P and Kaul S N 2017 Phys. Rev. B 95 184402
|
[58] |
Jobiliong E, Brooks J S, Choi E S, Lee H and Fisk Z 2005 Phys. Rev. B 72 104428
|
[59] |
Kadowaki K and Woods S 1986 Solid State Commun. 58 507
|
[60] |
McWhan D B, Remeika J P, Bader S D, Triplett B B and Phillips N E 1973 Phys. Rev. B 7 3079
|
[61] |
Maeno Y, Yoshida K, Hashimoto H, Nishizaki S, ichi Ikeda S, Nohara M, Fujita T, Mackenzie A, Hussey N, Bednorz J and Lichtenberg F 1997 J. Phys. Soc. Jpn. 66 1405
|
[62] |
Urano C, Nohara M, Kondo S, Sakai F, Takagi H, Shiraki T and Okubo T 2000 Phys. Rev. Lett. 85 1052
|
[63] |
Miyake K, Matsuura T and Varma C 1989 Solid State Commun. 71 1149
|
[64] |
Jacko A C, Fjærestad J O and Powell B J 1989 Nat. Phys. 5 422
|
[65] |
Schlottmann P 1989 Phys. Rep. 181 1
|
[66] |
Zhou W, Xu C Q, Li B, Sankar R, Zhang F M, Qian B, Cao C, Dai J H, Lu J, Jiang W X, Qian D and Xu X 2018 Phys. Rev. B 97 195120
|
[67] |
Pietri R, Andraka B, Kaczorowski D, Leithe-Jasper A, and Rogl P 2000 Phys. Rev. B 61 12169
|
[68] |
Zlatić V, Horvatić B, Milat I, Coqblin B, Czycholl G and Grenzebach C 2003 Phys. Rev. B 68 104432
|
[69] |
Jaccard D, Behnia K and Sierro J 1992 Phys. Lett. A 163 475
|
[70] |
Ren Z, Scheerer G W, Lapertot G and Jaccard D 2016 Phys. Rev. B 94 024522
|
[71] |
Fan Y T, Lee W H and Chen Y Y 2004 Phys. Rev. B 69 132401
|
[72] |
Szlawska M and Kaczorowski D 2012 Phys. Rev. B 85 134423
|
[73] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[74] |
Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X G, Reuter K and Scheffler M 2009 Comput. Phys. Commun. 180 2175
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|