Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097104    DOI: 10.1088/1674-1056/abab85
RAPID COMMUNICATION Prev   Next  

Intercalation of van der Waals layered materials: A route towards engineering of electron correlation

Jingjing Niu(牛晶晶)1,2, Wenjie Zhang(章文杰)1,2, Zhilin Li(李治林)1,2, Sixian Yang(杨嗣贤)3, Dayu Yan(闫大禹)4, Shulin Chen(陈树林)5, Zhepeng Zhang(张哲朋)6, Yanfeng Zhang(张艳锋)6, Xinguo Ren(任新国)3, Peng Gao(高鹏)2,5,7, Youguo Shi(石友国)4, Dapeng Yu(俞大鹏)1,2,8, Xiaosong Wu(吴孝松)1,2,8
1 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Beijing Key Laboratory of Quantum Devices, Peking University, Beijing 100871, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
3 CAS Key Laboratory of Quantum Information, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
4 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
5 Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China;
6 Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
7 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
8 Department of Physics, Southern University of Science and Technology of China, Shenzhen 518055, China
Abstract  

Being parent materials of two-dimensional (2D) crystals, van der Waals layered materials have received revived interest. In most 2D materials, the interaction between electrons is negligible. Introducing the interaction can give rise to a variety of exotic properties. Here, via intercalating a van der Waals layered compound VS2, we find evidence for electron correlation by extensive magnetic, thermal, electrical, and thermoelectric characterizations. The low temperature Sommerfeld coefficient is 64 mJ·K-2·mol-1 and the Kadowaki-Woods ratio rKW~0.20a0. Both supports an enhancement of the electron correlation. The temperature dependences of the resistivity and thermopower indicate an important role played by the Kondo effect. The Kondo temperature TK is estimated to be around 8 K. Our results suggest intercalation as a potential means to engineer the electron correlation in van der Waals materials, as well as 2D materials.

Keywords:  V5S8      intercalation      Kondo lattice      strong correlations  
Received:  11 July 2020      Revised:  28 July 2020      Accepted manuscript online:  01 August 2020
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  75.30.Mb (Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)  
  71.20.Tx (Fullerenes and related materials; intercalation compounds)  
Fund: 

Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CBA01603, 2016YFA0300600, and 2016YFA0300903), the National Natural Science Foundation of China (Grant Nos. 11574005, 11774009, 11222436, and 11574283), and the National Postdoctoral Program for Innovative Talents of China (Grant No. BX201700012) funded by China Postdoctoral Science Foundation.

Corresponding Authors:  Xiaosong Wu     E-mail:  xswu@pku.edu.cn

Cite this article: 

Jingjing Niu(牛晶晶), Wenjie Zhang(章文杰), Zhilin Li(李治林), Sixian Yang(杨嗣贤), Dayu Yan(闫大禹), Shulin Chen(陈树林), Zhepeng Zhang(张哲朋), Yanfeng Zhang(张艳锋), Xinguo Ren(任新国), Peng Gao(高鹏), Youguo Shi(石友国), Dapeng Yu(俞大鹏), Xiaosong Wu(吴孝松) Intercalation of van der Waals layered materials: A route towards engineering of electron correlation 2020 Chin. Phys. B 29 097104

[1] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[2] Stewart G R 1984 Rev. Mod. Phys. 56 755
[3] Lee P A 2008 Rep. Prog. Phys. 71 012501
[4] Doniach S 1977 Physica B+C 91 231
[5] Ott H R, Rudigier H, Delsing P and Fisk Z 1984 Phys. Rev. Lett. 52 1551
[6] Fisk Z, Ott H R, Rice T M and Smith J L 1986 Nature 320 124
[7] Schröder A, Aeppli G, Coldea R, Adams M, Stockert O, Löhneysen H, Bucher E, Ramazashvili R and Coleman P 2000 Nature 407 351
[8] Park T, Ronning F, Yuan H Q, Salamon M B, Movshovich R, Sarrao J L and Thompson J D 2006 Nature 440 65
[9] Yang Y F, Fisk Z, Lee H O, Thompson J D and Pines D 2008 Nature 454 611
[10] Si Q and Steglich F 2010 Science 329 1161
[11] Kondo S, Johnston D C, Swenson C A, Borsa F, Mahajan A V, Miller L L, Gu T, Goldman A I, Maple M B, Gajewski D A, Freeman E J, Dilley N R, Dickey R P, Merrin J, Kojima K, Luke G M, Uemura Y J, Chmaissem O and Jorgensen J D 1997 Phys. Rev. Lett. 78 3729
[12] Hossain Z, Hamashima S, Umeo K, Takabatake T, Geibel C and Steglich F 2000 Phys. Rev. B 62 8950
[13] Cheng J G, Zhou J S, Yang Y F, Zhou H D, Matsubayashi K, Uwatoko Y, MacDonald A and Goodenough J B 2013 Phys. Rev. Lett. 111 176403
[14] Marseglia E A 1983 Int. Rev. Phys. Chem. 3 177
[15] Friend R and Yoffe A 1987 Adv. Phys. 36 1
[16] Dresselhaus M S and Dresselhaus G 2002 Adv. Phys. 51 1
[17] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[18] Jung Y, Zhou Y and Cha J J 2016 Inorg. Chem. Front. 3 452
[19] Silbernagel B G, Levy R B and Gamble F R 1975 Phys. Rev. B 11 4563
[20] Fujimori A, Saeki M and Nozaki H 1991 Phys. Rev. B 44 163
[21] Murphy D W, Cros C, Salvo F J D and Waszczak J V 1977 Inorg. Chem. 16 3027
[22] Nozaki H, Umehara M, Ishizawa Y, Saeki M, Mizoguchi T and Nakahira M 1978 J. Phys. Chem. Solids 39 851
[23] Vries A D and Haas C 1973 J. Phys. Chem. Solids 34 651
[24] Nishihara H, Yasuoka H, Oka Y, Kosuge K and Kachi S 1977 J. Phys. Soc. Jpn. 42 787
[25] Kitaoka Y and Yasuoka H 1980 J. Phys. Soc. Jpn. 48 1949
[26] Katsuta H, McLellan R B and Suzuki K 1979 J. Phys. Chem. Solids 40 1089
[27] Nakanishi M, Yoshimura K, Kosuge K, Goto T, Fujii T and Takada J 2000 J. Magn. Magn. Mater. 221 301
[28] Funahashi S, Nozaki H and Kawada I 1981 J. Phys. Chem. Solids 42 1009
[29] Niu J, Yan B, Ji Q, Liu Z, Li M, Gao P, Zhang Y, Yu D and Wu X 2017 Phys. Rev. B 96 075402
[30] Barua S, Hatnean M C, Lees M R and Balakrishnan G 2017 Sci. Rep. 7 10964
[31] Liu H, Xue Y, Shi J A, Guzman R A, Zhang P, Zhou Z, He Y, Bian C, Wu L, Ma R et al. 2019 Nano Lett. 19 8572
[32] Hossain Z, Ohmoto H, Umeo K, Iga F, Suzuki T, Takabatake T, Takamoto N and Kindo K 1999 Phys. Rev. B 60 10383
[33] Li S Y, Taillefer L, Hawthorn D G, Tanatar M A, Paglione J, Sutherland M, Hill R W, Wang C H and Chen X H 2004 Phys. Rev. Lett. 93 056401
[34] Andersen N H and Smith H 1979 Phys. Rev. B 19 384
[35] Lashley J C, Stevens R, Crawford M K, Boerio-Goates J, Woodfield B F, Qiu Y, Lynn J W, Goddard P A and Fisher R A 2008 Phys. Rev. B 78 104406
[36] Falkowski M, Kowalczyk A and Toliński T 2011 J. Alloys Compd. 509 6135
[37] Toliński T, Kowalczyk A, Szewczyk A and Gutowska M 2006 J. Phys.: Condens. Matter 18 3435
[38] Svoboda P, Vejpravová J, Kim-Ngan N T and Kaysel F 2004 J. Magnet. Magnet. Mater. 272–276 595
[39] Schotte K and Schotte U 1975 Phys. Lett. A 55 38
[40] Bredl C D, Steglich F and Schotte K D 1978 Zeitschrift Für Physik B Condensed Matter 29 327
[41] Kawabata J, Takabatake T, Umeo K and Muro Y 2014 Phys. Rev. B 89 094404
[42] Hodovanets H, Bud’ko S L, Straszheim W E, Taufour V, Mun E D, Kim H, Flint R and Canfield P C 2015 Phys. Rev. Lett. 114 236601
[43] Mattis D C 1985 Theory of Magnetism Ⅱ: Thermodynamics and statistical mechanics (Berlin and New York: Springer-Verlag) p. 22
[44] Blanco J A, Gignoux D and Schmitt D 1991 Phys. Rev. B 43 13145
[45] Blanco J A, de Podesta M, Espeso J I, Gomez Sal J C, Lester C, McEwen K A, Patrikios N and Rodriguez Fernandez J 1994 Phys. Rev. B 49 15126
[46] Gauzzi A, Sellam A, Rousse G, Klein Y, Taverna D, Giura P, Calandra M, Loupias G, Gozzo F, Gilioli E, Bolzoni F, Allodi G, De Renzi R, Calestani G L and Roy P 2014 Phys. Rev. B 89 235125
[47] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[48] Beck P A and Claus H 1970 J. Res. Nat. Bur. Stand. A 74 449
[49] Savrasov S Y and Savrasov D Y 1996 Phys. Rev. B 54 16487
[50] Pikul A P, Kaczorowski D, Plackowski T, Czopnik A, Michor H, Bauer E, Hilscher G, Rogl P and Grin Y 2003 Phys. Rev. B 67 224417
[51] Yang Y F and David P 2012 Proc. Natl. Acad. Sci. USA 109 E3060
[52] Yang Y F 2016 Rep. Prog. Phys. 79 074501
[53] Becker B, Ramakrishnan S, Menovsky A A, Nieuwenhuys G J and Mydosh J A 1997 Phys. Rev. Lett. 78 1347
[54] Mentink S A M, Mason T E, Süllow S, Nieuwenhuys G J, Menovsky A A, Mydosh J A and Perenboom J A A J 1996 Phys. Rev. B 53 R6014
[55] Andersen N H 1980 Crystalline electric field and structural effects in f-electron systems (New York and London: Plenum) p. 375
[56] Raquet B, Viret M, Sondergard E, Cespedes O and Mamy R 2002 Phys. Rev. B 66 024433
[57] Madduri P V P and Kaul S N 2017 Phys. Rev. B 95 184402
[58] Jobiliong E, Brooks J S, Choi E S, Lee H and Fisk Z 2005 Phys. Rev. B 72 104428
[59] Kadowaki K and Woods S 1986 Solid State Commun. 58 507
[60] McWhan D B, Remeika J P, Bader S D, Triplett B B and Phillips N E 1973 Phys. Rev. B 7 3079
[61] Maeno Y, Yoshida K, Hashimoto H, Nishizaki S, ichi Ikeda S, Nohara M, Fujita T, Mackenzie A, Hussey N, Bednorz J and Lichtenberg F 1997 J. Phys. Soc. Jpn. 66 1405
[62] Urano C, Nohara M, Kondo S, Sakai F, Takagi H, Shiraki T and Okubo T 2000 Phys. Rev. Lett. 85 1052
[63] Miyake K, Matsuura T and Varma C 1989 Solid State Commun. 71 1149
[64] Jacko A C, Fjærestad J O and Powell B J 1989 Nat. Phys. 5 422
[65] Schlottmann P 1989 Phys. Rep. 181 1
[66] Zhou W, Xu C Q, Li B, Sankar R, Zhang F M, Qian B, Cao C, Dai J H, Lu J, Jiang W X, Qian D and Xu X 2018 Phys. Rev. B 97 195120
[67] Pietri R, Andraka B, Kaczorowski D, Leithe-Jasper A, and Rogl P 2000 Phys. Rev. B 61 12169
[68] Zlatić V, Horvatić B, Milat I, Coqblin B, Czycholl G and Grenzebach C 2003 Phys. Rev. B 68 104432
[69] Jaccard D, Behnia K and Sierro J 1992 Phys. Lett. A 163 475
[70] Ren Z, Scheerer G W, Lapertot G and Jaccard D 2016 Phys. Rev. B 94 024522
[71] Fan Y T, Lee W H and Chen Y Y 2004 Phys. Rev. B 69 132401
[72] Szlawska M and Kaczorowski D 2012 Phys. Rev. B 85 134423
[73] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[74] Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X G, Reuter K and Scheffler M 2009 Comput. Phys. Commun. 180 2175
[1] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[2] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[3] CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2021, 30(8): 087101.
[4] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[5] Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎). Chin. Phys. B, 2021, 30(10): 107402.
[6] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[7] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[8] Fabrication of large-scale graphene/2D-germanium heterostructure by intercalation
Hui Guo(郭辉), Xueyan Wang(王雪艳), De-Liang Bao(包德亮), Hong-Liang Lu(路红亮), Yu-Yang Zhang(张余洋), Geng Li(李更), Ye-Liang Wang(王业亮), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(7): 078103.
[9] Key parameters of two typical intercalation reactions to prepare hybrid inorganic-organic perovskite films
Biao Shi(石标), Sheng Guo(郭升), Changchun Wei(魏长春), Baozhang Li(李宝璋), Yi Ding(丁毅), Yuelong Li(李跃龙), Qing Wan(万青), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2018, 27(1): 018807.
[10] Quantum critical behavior in an antiferromagnetic heavy-fermion Kondo lattice system (Ce1-xLax)2Ir3Ge5
Rajwali Khan, Qianhui Mao(毛乾辉), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Jianhua Du(杜建华), Binjie Xu(许彬杰), Yuxing Zhou(周宇星), Yannan Zhang(张燕楠), Bing Chen(陈斌), Minghu Fang(方明虎). Chin. Phys. B, 2017, 26(1): 017401.
[11] Characterizing silicon intercalated graphene grown epitaxially on Ir films by atomic force microscopy
Zhang Yong (张勇), Wang Ye-Liang (王业亮), Que Yan-De (阙炎德), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2015, 24(7): 078104.
[12] Doping inhomogeneity and staging of ultra-thin graphite intercalation compound flakes probed by visible and near-infrared Raman spectroscopy
Lu Yan (鲁妍), Zhang Xin (张昕), Wu Jiang-Bin (吴江滨), Li Xiao-Li (李晓莉), Li Qiao-Qiao (厉巧巧), Tan Ping-Heng (谭平恒). Chin. Phys. B, 2015, 24(7): 077804.
[13] Electrochemical synthesis of alkali-intercalated iron selenide superconductors
Shen Shi-Jie (申士杰), Ying Tian-Ping (应天平), Wang Gang (王刚), Jin Shi-Feng (金士锋), Zhang Han (张韩), Lin Zhi-Ping (林志萍), Chen Xiao-Long (陈小龙). Chin. Phys. B, 2015, 24(11): 117406.
[14] Effects of graphene defects on Co cluster nucleation and intercalation
Xu Wen-Yan (徐文焱), Huang Li (黄立), Que Yan-De (阙炎德), Lin Xiao (林晓), Wang Ye-Liang (王业亮), Du Shi-Xuan (杜世萱), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2014, 23(8): 088108.
[15] Intercalation of metals and silicon at the interface of epitaxial graphene and its substrates
Huang Li (黄立), Xu Wen-Yan (徐文焱), Que Yan-De (阙炎德), Mao Jin-Hai (毛金海), Meng Lei (孟蕾), Pan Li-Da (潘理达), Li Geng (李更), Wang Ye-Liang (王业亮), Du Shi-Xuan (杜世萱), Liu Yun-Qi (刘云圻), Gao Hong-Jun (高鸿钧). Chin. Phys. B, 2013, 22(9): 096803.
No Suggested Reading articles found!