Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 090501    DOI: 10.1088/1674-1056/aba60d
GENERAL Prev   Next  

Active Brownian particles simulated in molecular dynamics

Liya Wang(王丽雅)1,4, Xinpeng Xu(徐新鹏)2, Zhigang Li(李志刚)3, Tiezheng Qian(钱铁铮)4
1 Faulty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China;
2 Faculty of Physics, Guangdong-Technion-Israel Institute of Technology, Shantou 515063, China;
3 Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China;
4 Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China
Abstract  In the numerical studies of active particles, models consisting of a solid body and a fluid body have been well established and widely used. In this work, such an active Brownian particle (ABP) is realized in molecular dynamics (MD) simulations. Immersed in a fluid, each ABP consists of a head particle and a spherical phantom region of fluid where the flagellum of a microswimmer takes effect. Quantitative control over the orientational persistence time is achieved via an external stochastic dynamics. This control makes it possible to validate ABP's diffusion property in a wide range of particle activity. In molecular description, the axial velocity of ABP exhibits a Gaussian distribution. Its mean value defines the active velocity which increases with the active force linearly, but shows no dependence on the rotational diffusion coefficient. For the active diffusion coefficient measured in free space, it shows semi-quantitative agreement with the analytical result predicted by a minimal ABP model. Furthermore, the active diffusion coefficient is also calculated by performing a quantitative analysis on the ABP's distribution along x axis in a confinement potential. Comparing the active diffusion coefficients in the above two cases (in free space and in confinement), the validity of the ABP modeling implemented in MD simulations is confirmed. Possible reasons for the small deviation between the two diffusion coefficients are also discussed.
Keywords:  active Brownian particle      diffusion      confinement      boundary  
Received:  25 May 2020      Revised:  22 June 2020      Published:  05 September 2020
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.40.Jc (Brownian motion)  
  83.10.Rs (Computer simulation of molecular and particle dynamics)  
Fund: Project supported by Hong Kong RGC CRF, China (Grant No. C1018-17G), GRF, China (Grant No. 16228216), and Jiangsu University Foundation (Grant No. 20JDG20).
Corresponding Authors:  Tiezheng Qian     E-mail:  maqian@ust.hk

Cite this article: 

Liya Wang(王丽雅), Xinpeng Xu(徐新鹏), Zhigang Li(李志刚), Tiezheng Qian(钱铁铮) Active Brownian particles simulated in molecular dynamics 2020 Chin. Phys. B 29 090501

[1] Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1 323
[2] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006
[3] Zöttl A and Stark H 2016 J. Phys.: Condens. Matter 28 253001
[4] Romanczuk P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Eur. Phys. J. Spec. Top. 202 1
[5] Berg H C and Anderson R A 1973 Nature 245 380
[6] Cisneros L H, Kessler J O, Ganguly S and Goldstein R E 2011 Phys. Rev. E 83 061907
[7] Cates M E 2012 Rep. Prog. Phys. 75 042601
[8] Harshey R M 2003 Annu. Rev. Microbiol. 57 249
[9] Selmeczi D, Li L, Pedersen L I, Nrrelykke S, Hagedorn P H, Mosler S, Larsen N B, Cox E C and Flyvbjerg H 2008 Eur. Phys. J. Spec. Top. 157 1
[10] Boedeker H U, Beta C, Frank T D and Bodenschatz E 2010 Europhys. Lett. 90 28005
[11] Friedrich B M and Jülicher F 2007 Proc. Natl. Acad. Sci. USA 104 13256
[12] Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C and Speck T 2013 Phys. Rev. Lett. 110 238301
[13] Palacci J, Cottin-Bizonne C, Ybert C and Bocquet L 2010 Phys. Rev. Lett. 105 088304
[14] Volpe G, Gigan S and Volpe G 2014 Am. J. Phys. 82 659
[15] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha R A 2013 Rev. Mod. Phys. 85 1143
[16] Purcell E M 1977 Am. J. Phys. 45 3
[17] Chen X, Yang X, Yang M and Zhang H 2015 EPL 111 54002
[18] Lauga E 2016 Annu. Rev. Fluid Mech. 48 105
[19] Furukawa A, Marenduzzo D and Cates M E 2014 Phys. Rev. E 90 022303
[20] Lauga E and Powers T R 2009 Rep. Prog. Phys. 72 096601
[21] Hernandez-Ortiz J P, Stoltz C G and Graham M D 2005 Phys. Rev. Lett. 95 204501
[22] Elgeti J, Winkler R and Gompper G 2015 Rep. Prog. Phys. 78 056601
[23] Baskaran A and Marchetti M C 2009 Proc. Natl. Acad. Sci. USA 106 15567
[24] de Graaf J, Menke H, Mathijssen A J, Fabritius M, Holm C and Shendruk T N 2016 J. Chem. Phys. 144 134106
[25] Howse J R, Jones R A, Ryan A J, Gough T, Vafabakhsh R and Golestanian R 2007 Phys. Rev. Lett. 99 048102
[26] Ai B Q and Li F G 2017 Soft Matter 13 2536
[27] Suma A, Gonnella G, Marenduzzo D and Orlandini E 2014 Europhys. Lett. 108 56004
[28] Peruani F, Deutsch A and Bär M 2006 Phys. Rev. E 74 030904
[29] Kudrolli A, Lumay G, Volfson D and Tsimring L S 2008 Phys. Rev. Lett. 100 058001
[30] Gao T and Li Z 2017 Phys. Rev. Lett. 119 108002
[31] Cates M and Tailleur J 2013 EPL 101 20010
[32] Menzel A M 2015 Phy. Rep. 554 1
[33] Stenhammar J, Tiribocchi A, Allen R J, Marenduzzo D and Cates M E 2013 Phys. Rev. Lett. 111 145702
[34] Pototsky A and Stark H 2012 EPL 98 50004
[35] Maggi C, Marconi U M B, Gnan N and Di Leonardo R 2015 Sci. Rep. 5 10742
[36] Das S, Gompper G and Winkler R G 2018 New J. Phys. 20 015001
[37] Volpe G and Volpe G 2013 Am. J. Phys. 81 224
[38] Szamel G 2014 Phys. Rev. E 90 012111
[39] Tailleur J and Cates M 2009 EPL 86 60002
[40] Ye S, Liu P, Wei Z, Ye F, Yang M and Chen K 2020 Chin. Phys. B 29 058201
[41] Tian W D, Gu Y, Guo Y K and Chen K 2017 Chin. Phys. B 26 100502
[42] Howard M P, Gautam A, Panagiotopoulos A Z and Nikoubashman A 2016 Phys. Rev. Fluids 1 044203
[43] Weeks J D, Chandler D and Andersen H C 1971 J. Chem. Phys. 54 5237
[44] Plimpton S 1995 J. Comput. Phys. 117 1
[45] Vicsek T, Czirók A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[46] Martens K, Angelani L, Di Leonardo R and Bocquet L 2012 Eur. Phys. J. E. 35 84
[47] Ruiz-Franco J, Rovigatti L and Zaccarelli E 2018 Eur. Phys. J. E. 41 80
[48] Espanol P and Warren P B 2017 J. Chem. Phys. 146 150901
[1] Influence of uniform momentum zones on frictional drag within the turbulent boundary layer
Kangjun Wang(王康俊) and Nan Jiang(姜楠). Chin. Phys. B, 2021, 30(3): 034703.
[2] Model predictive inverse method for recovering boundary conditions of two-dimensional ablation
Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红). Chin. Phys. B, 2021, 30(3): 030203.
[3] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[4] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[5] 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets
Lizhong Zhao(赵利忠), Xuefeng Zhang(张雪峰), Mi Yan(严密), Zhongwu Liu(刘仲武), and Jean-Marc Greneche. Chin. Phys. B, 2021, 30(1): 013302.
[6] Effect of high-or low-speed fluctuations on the small-scale bursting events in an active control experiment
Xiao-Tong Cui(崔晓通), Nan Jiang(姜楠), and Zhan-Qi Tang(唐湛棋). Chin. Phys. B, 2021, 30(1): 014702.
[7] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[8] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[9] Mesoscale eddies and their dispersive environmental impacts in the Persian Gulf
Amin Raeisi, Abbasali Bidokhti, Seyed Mohammad Jafar Nazemosadat, Kamran Lari. Chin. Phys. B, 2020, 29(8): 084701.
[10] Measurement and verification of concentration-dependent diffusion coefficient: Ray tracing imagery of diffusion process
Li Wei(魏利), Wei-Dong Meng(孟伟东), Li-Cun Sun(孙丽存), Xin-Fei Cao(曹新飞), Xiao-Yun Pu(普小云). Chin. Phys. B, 2020, 29(8): 084206.
[11] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[12] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[13] Diffusion and collective motion of rotlets in 2D space
Daiki Matsunaga, Takumi Chodo, Takuma Kawai. Chin. Phys. B, 2020, 29(6): 064705.
[14] Understanding the Li diffusion mechanism and positive effect of current collector volume expansion in anode free batteries
Yan Zhuang(庄严), Zheyi Zou(邹喆乂), Bo Lu(吕浡), Yajie Li(李亚捷), Da Wang(王达), Maxim Avdeev, Siqi Shi(施思齐). Chin. Phys. B, 2020, 29(6): 068202.
[15] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
No Suggested Reading articles found!