Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097103    DOI: 10.1088/1674-1056/aba606

Two ultra-stable novel allotropes of tellurium few-layers

Changlin Yan(严长林)1,2, Cong Wang(王聪)2, Linwei Zhou(周霖蔚)2, Pengjie Guo(郭朋杰)2, Kai Liu(刘凯)2, Zhong-Yi Lu(卢仲毅)2, Zhihai Cheng(程志海)2, Yang Chai(柴扬)3, Anlian Pan(潘安练)4, Wei Ji(季威)2
1 School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China;
3 The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China;
4 Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Abstract  At least four two- or quasi-one-dimensional allotropes and a mixture of them were theoretically predicted or experimentally observed for low-dimensional Te, namely the α, β, γ, δ, and chiral-α +δ phases. Among them the γ and α phases were found to be the most stable phases for monolayer and thicker layers, respectively. Here, we found two novel low-dimensional phases, namely the ε and ζ phases. The ζ phase is over 29 meV/Te more stable than the most stable monolayer γ phase, and the ε phase shows comparable stability with the most stable monolayer γ phase. The energetic difference between the ζ and α phases reduces with respect to the increased layer thickness and vanishes at the four-layer (12-sublayer) thickness, while this thickness increases under change doping. Both ε and ζ phases are metallic chains and layers, respectively. The ζ phase, with very strong interlayer coupling, shows quantum well states in its layer-dependent bandstructures. These results provide significantly insight into the understanding of polytypism in Te few-layers and may boost tremendous studies on properties of various few-layer phases.
Keywords:  two-dimensional materials      Te      density functional theory  
Received:  06 May 2020      Revised:  29 June 2020      Published:  05 September 2020
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the Science Fund from the Ministry of Science and Technology (MOST) of China (Grant No. 2018YFE0202700), the National Natural Science Foundation of China (Grant Nos. 11274380, 91433103, 11622437, 61674171, 11974422, and 61761166009), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), the Fundamental Research Funds for the Central Universities of China and the Research Funds of Renmin University of China (Grant No. 16XNLQ01), the Research Grant No. Council of Hong Kong, China (Grant No. N_PolyU540/17), and the Hong Kong Polytechnic University (Grant No. G-SB53). Cong Wang was supported by the Outstanding Innovative Talents Cultivation Funded Programs 2017 of Renmin University of China.
Corresponding Authors:  Wei Ji     E-mail:

Cite this article: 

Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威) Two ultra-stable novel allotropes of tellurium few-layers 2020 Chin. Phys. B 29 097103

[1] Balendhran S, Walia S, Nili H, Sriram S and Bhaskaran M 2015 Small 11 640
[2] Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S and Cooper V R 2015 ACS Nano 9 11509
[3] Molle A, Goldberger J, Houssa M, Xu Y, Zhang S C and Akinwande D 2017 Nat. Mater. 16 163
[4] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[5] Geim A K and Novoselov K S 2010 Nanoscience and technology: a collection of reviews from nature journals (World Scientific) pp. 11-19
[6] Neto A C, Guinea F, Peres N M, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[7] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
[8] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[9] Li G, Li Y, Liu H, Guo Y, Li Y and Zhu D 2010 Chem. Commun. 46 3256
[10] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[11] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[12] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[13] Dávila M, Xian L, Cahangirov S, Rubio A and Le Lay G 2014 New J. Phys. 16 095002
[14] Tang P, Chen P, Cao W, Huang H, Cahangirov S, Xian L, Xu Y, Zhang S C, Duan W and Rubio A 2014 Phys. Rev. B 90 121408
[15] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[16] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U and Guest J R 2015 Science 350 1513
[17] Mannix A J, Zhang Z, Guisinger N P, Yakobson B I and Hersam M C 2018 Nat. Nanotechnol. 13 444
[18] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563
[19] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[20] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[21] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 1
[22] Wei Q and Peng X 2014 Appl. Phys. Lett. 104 251915
[23] Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723
[24] Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angew. Chem. Int. Ed. 54 3112
[25] Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W and Ni Z 2016 Nat. Commun. 7 13352
[26] Drozdov I K, Alexandradinata A, Jeon S, Nadj-Perge S, Ji H, Cava R J, Bernevig B A and Yazdani A 2014 Nat. Phys. 10 664
[27] Xia F, Mueller T, Lin Y-m, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
[28] Liu C H, Chang Y C, Norris T B and Zhong Z 2014 Nat. Nanotechnology 9 273
[29] Kong X K, Chen C L and Chen Q W 2014 Chem. Soc. Rev. 43 2841
[30] Deng H X, Song Z G, Li S S, Wei S H and Luo J W 2018 Chin. Phys. Lett. 35 057301
[31] Li H, Wang Z Y, Zheng X J, Liu Y and Zhong Y 2018 Chin. Phys. Lett. 35 127501
[32] Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L and Feng X 2019 Chin. Phys. Lett. 36 076801
[33] Jiang G, Feng Y, Wu W, Li S, Bai Y, Li Y, Zhang Q, Gu L, Feng X and Zhang D 2018 Chin. Phys. Lett. 35 076802
[34] Wu D, Mi Z, Li Y, Wu W, Li P, Song Y, Liu G, Li G and Luo J 2019 Chin. Phys. Lett. 36 077102
[35] Jia Y T, Zhao J F, Zhang S J, Yu S, Dai G Y, Li W M, Duan L, Zhao G Q, Wang X C and Zheng X 2019 Chin. Phys. Lett. 36 087401
[36] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[37] Liao M, Zang Y, Guan Z, Li H, Gong Y, Zhu K, Hu X P, Zhang D, Xu Y and Wang Y Y 2018 Nat. Phys. 14 344
[38] Kong X, Liu Q, Zhang C, Peng Z and Chen Q 2017 Chem. Soc. Rev. 46 2127
[39] Kim M S, Ma X H, Cho K H, Jeon S Y, Hur K and Sung Y M 2018 Adv. Mater. 30 1702701
[40] Yi S, Zhu Z, Cai X, Jia Y and Cho J H 2018 Inorg. Chem. 57 5083
[41] Du Y, Qiu G, Wang Y, Si M, Xu X, Wu W and Ye P D 2017 Nano Lett. 17 3965
[42] Huang X, Guan J, Lin Z, Liu B, Xing S, Wang W and Guo J 2017 Nano Lett. 17 4619
[43] Chen J, Dai Y, Ma Y, Dai X, Ho W and Xie M 2017 Nanoscale 9 15945
[44] Wang Y, Qiu G, Wang R, Huang S, Wang Q, Liu Y, Du Y, Goddard W A, Kim M J and Xu X 2018 Nat. Electron. 1 228
[45] Zhu Z, Cai X, Yi S, Chen J, Dai Y, Niu C, Guo Z, Xie M, Liu F and Cho J H 2017 Phys. Rev. Lett. 119 106101
[46] Qiao J, Pan Y, Yang F, Wang C, Chai Y and Ji W 2018 Sci. Bull. 63 159
[47] Wang Y, Xiao C, Chen M, Hua C, Zou J, Wu C, Jiang J, Yang S A, Lu Y and Ji W 2018 Mater. Horizons 5 521
[48] Chao L, Bukhtiar A, Xi S, Kong P P, Wang W P, Zhao H F, Yao Y, Zou B S, Li Y C, Li X D, Liu J, Jin C Q and Yu R C 2015 Chin. Phys. B 24 036401
[49] Tia X Q, Du S X and Gao H J 2008 Chin. Phys. B 17 286
[50] Zhang W, Wu Q, Yazyev O V, Weng H, Guo Z, Cheng W D and Chai G L 2018 Phys. Rev. B 98 115411
[51] Zhou D W, Pu C Y, Dominik S, Zhang G F, Lu C, Li G Q and Song J F 2013 Chin. Phys. Lett. 30 027401
[52] Wang C, Zhou X, Qiao J, Zhou L, Kong X, Pan Y, Cheng Z, Chai Y and Ji W 2018 Nanoscale 10 22263
[53] Qiao J, Zhou L and Ji W 2017 Chin. Phys. B 26 036803
[54] Hu Z X, Kong X, Qiao J, Normand B and Ji W 2016 Nanoscale 8 2740
[55] Jia Q, Kong X, Qiao J and Ji W 2016 Sci. China-Phys. Mech. Astron. 59 696811
[56] Du Y, Zhuang J, Wang J, Li Z, Liu H, Zhao J, Xu X, Feng H, Chen L and Wu K 2016 Sci. Adv. 2 e1600067
[57] Arafune R, Lin C L, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2013 Surf. Sci. 608 297
[58] Shuai Z 2020 Chin. Phys. Lett. 37 068103
[59] Zhang J, Zhang S, Qiu X, Wu Y, Sun Q, Zou J, Li T and Chen P 2020 Chin. Phys. Lett. 37 038101
[60] Zhou T, Zhu X G, Tong M, Zhang Y, Luo X B, Xie X, Feng W, Chen Q, Tan S and Wang Z Y 2019 Chin. Phys. Lett. 36 117303
[61] Agapito L A, Kioussis N, Goddard I I I W A and Ong N P 2013 Phys. Rev. Lett. 110 176401
[62] Blöchl P E 1994 Phys. Rev. B 50 17953
[63] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[64] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[65] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M and Dabo I 2009 J. Phys.: Condens. Matter 21 395502
[66] Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401
[67] Lee K, Murray É D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
[68] Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201
[69] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[70] Thonhauser T, Cooper V R, Li S, Puzder A, Hyldgaard P and Langreth D C 2007 Phys. Rev. B 76 125112
[71] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[72] Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q and Xie L 2015 Nat. Commun. 6 1
[73] Zhao Y, Qiao J, Yu Z, Yu P, Xu K, Lau S P, Zhou W, Liu Z, Wang X and Ji W 2017 Adv. Mater. 29 1604230
[74] Qiao X F, Wu J B, Zhou L, Qiao J, Shi W, Chen T, Zhang X, Zhang J, Ji W and Tan P H 2016 Nanoscale 8 8324
[75] Ji W, Lu Z Y and Gao H 2006 Phys. Rev. Lett. 97 246101
[76] Wang C, Zhou X, Pan Y, Qiao J, Kong X, Kaun C C and Ji W 2018 Phys. Rev. B 97 245409
[77] Shulenburger L, Baczewski A D, Zhu Z, Guan J and Tomanek D 2015 Nano Lett. 15 8170
[78] Jamieson J and McWhan D 1965 J. Chem. Phys. 43 1149
[1] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[2] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[3] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[4] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[5] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[6] Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers
Xiaoyu Hu(胡晓宇), Linlin Mou(牟琳琳), and Zunfeng Liu(刘遵峰)†. Chin. Phys. B, 2021, 30(1): 018401.
[7] Protein-protein docking with interface residue restraints
Hao Li(李豪) and Sheng-You Huang(黄胜友)†. Chin. Phys. B, 2021, 30(1): 018703.
[8] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[9] Theoretical study of the hyperfine interaction constants, Landé g-factors, and electric quadrupole moments for the low-lying states of the 61Ni q+ ( q= 11, 12, 14 , and 15) ions
Ting-Xian Zhang(张婷贤), Yong-Hui Zhang(张永慧), Cheng-Bin Li(李承斌), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(1): 013101.
[10] TiOx-based self-rectifying memory device for crossbar WORM memory array applications
Li-Ping Fu(傅丽萍), Xiao-Qiang Song(宋小强), Xiao-Ping Gao(高晓平), Ze-Wei Wu(吴泽伟), Si-Kai Chen(陈思凯), and Ying-Tao Li(李颖弢). Chin. Phys. B, 2021, 30(1): 016103.
[11] Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices
Shao-Jin Qi(齐少锦), Xuan Sun(孙璇), Xi Yan(严曦), Hui Zhang(张慧), Hong-Rui Zhang(张洪瑞), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), and Yuan-Sha Chen(陈沅沙). Chin. Phys. B, 2021, 30(1): 017301.
[12] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[13] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[14] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[15] Effect of pressure on the electrical properties of flexible NiPc thin films fabricated by rubbing-in technology
Khasan S Karimov, Fahmi F Muhammadsharif, Zubair Ahmad, M Muqeet Rehman, and Rashid Ali. Chin. Phys. B, 2021, 30(1): 014703.
No Suggested Reading articles found!