Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097103    DOI: 10.1088/1674-1056/aba606

Two ultra-stable novel allotropes of tellurium few-layers

Changlin Yan(严长林)1,2, Cong Wang(王聪)2, Linwei Zhou(周霖蔚)2, Pengjie Guo(郭朋杰)2, Kai Liu(刘凯)2, Zhong-Yi Lu(卢仲毅)2, Zhihai Cheng(程志海)2, Yang Chai(柴扬)3, Anlian Pan(潘安练)4, Wei Ji(季威)2
1 School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China;
3 The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China;
4 Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Abstract  At least four two- or quasi-one-dimensional allotropes and a mixture of them were theoretically predicted or experimentally observed for low-dimensional Te, namely the α, β, γ, δ, and chiral-α +δ phases. Among them the γ and α phases were found to be the most stable phases for monolayer and thicker layers, respectively. Here, we found two novel low-dimensional phases, namely the ε and ζ phases. The ζ phase is over 29 meV/Te more stable than the most stable monolayer γ phase, and the ε phase shows comparable stability with the most stable monolayer γ phase. The energetic difference between the ζ and α phases reduces with respect to the increased layer thickness and vanishes at the four-layer (12-sublayer) thickness, while this thickness increases under change doping. Both ε and ζ phases are metallic chains and layers, respectively. The ζ phase, with very strong interlayer coupling, shows quantum well states in its layer-dependent bandstructures. These results provide significantly insight into the understanding of polytypism in Te few-layers and may boost tremendous studies on properties of various few-layer phases.
Keywords:  two-dimensional materials      Te      density functional theory  
Received:  06 May 2020      Revised:  29 June 2020      Published:  05 September 2020
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the Science Fund from the Ministry of Science and Technology (MOST) of China (Grant No. 2018YFE0202700), the National Natural Science Foundation of China (Grant Nos. 11274380, 91433103, 11622437, 61674171, 11974422, and 61761166009), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), the Fundamental Research Funds for the Central Universities of China and the Research Funds of Renmin University of China (Grant No. 16XNLQ01), the Research Grant No. Council of Hong Kong, China (Grant No. N_PolyU540/17), and the Hong Kong Polytechnic University (Grant No. G-SB53). Cong Wang was supported by the Outstanding Innovative Talents Cultivation Funded Programs 2017 of Renmin University of China.
Corresponding Authors:  Wei Ji     E-mail:

Cite this article: 

Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威) Two ultra-stable novel allotropes of tellurium few-layers 2020 Chin. Phys. B 29 097103

[1] Balendhran S, Walia S, Nili H, Sriram S and Bhaskaran M 2015 Small 11 640
[2] Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S and Cooper V R 2015 ACS Nano 9 11509
[3] Molle A, Goldberger J, Houssa M, Xu Y, Zhang S C and Akinwande D 2017 Nat. Mater. 16 163
[4] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[5] Geim A K and Novoselov K S 2010 Nanoscience and technology: a collection of reviews from nature journals (World Scientific) pp. 11-19
[6] Neto A C, Guinea F, Peres N M, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[7] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
[8] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[9] Li G, Li Y, Liu H, Guo Y, Li Y and Zhu D 2010 Chem. Commun. 46 3256
[10] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[11] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[12] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113
[13] Dávila M, Xian L, Cahangirov S, Rubio A and Le Lay G 2014 New J. Phys. 16 095002
[14] Tang P, Chen P, Cao W, Huang H, Cahangirov S, Xian L, Xu Y, Zhang S C, Duan W and Rubio A 2014 Phys. Rev. B 90 121408
[15] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[16] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U and Guest J R 2015 Science 350 1513
[17] Mannix A J, Zhang Z, Guisinger N P, Yakobson B I and Hersam M C 2018 Nat. Nanotechnol. 13 444
[18] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563
[19] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[20] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[21] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 1
[22] Wei Q and Peng X 2014 Appl. Phys. Lett. 104 251915
[23] Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723
[24] Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angew. Chem. Int. Ed. 54 3112
[25] Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W and Ni Z 2016 Nat. Commun. 7 13352
[26] Drozdov I K, Alexandradinata A, Jeon S, Nadj-Perge S, Ji H, Cava R J, Bernevig B A and Yazdani A 2014 Nat. Phys. 10 664
[27] Xia F, Mueller T, Lin Y-m, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
[28] Liu C H, Chang Y C, Norris T B and Zhong Z 2014 Nat. Nanotechnology 9 273
[29] Kong X K, Chen C L and Chen Q W 2014 Chem. Soc. Rev. 43 2841
[30] Deng H X, Song Z G, Li S S, Wei S H and Luo J W 2018 Chin. Phys. Lett. 35 057301
[31] Li H, Wang Z Y, Zheng X J, Liu Y and Zhong Y 2018 Chin. Phys. Lett. 35 127501
[32] Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L and Feng X 2019 Chin. Phys. Lett. 36 076801
[33] Jiang G, Feng Y, Wu W, Li S, Bai Y, Li Y, Zhang Q, Gu L, Feng X and Zhang D 2018 Chin. Phys. Lett. 35 076802
[34] Wu D, Mi Z, Li Y, Wu W, Li P, Song Y, Liu G, Li G and Luo J 2019 Chin. Phys. Lett. 36 077102
[35] Jia Y T, Zhao J F, Zhang S J, Yu S, Dai G Y, Li W M, Duan L, Zhao G Q, Wang X C and Zheng X 2019 Chin. Phys. Lett. 36 087401
[36] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[37] Liao M, Zang Y, Guan Z, Li H, Gong Y, Zhu K, Hu X P, Zhang D, Xu Y and Wang Y Y 2018 Nat. Phys. 14 344
[38] Kong X, Liu Q, Zhang C, Peng Z and Chen Q 2017 Chem. Soc. Rev. 46 2127
[39] Kim M S, Ma X H, Cho K H, Jeon S Y, Hur K and Sung Y M 2018 Adv. Mater. 30 1702701
[40] Yi S, Zhu Z, Cai X, Jia Y and Cho J H 2018 Inorg. Chem. 57 5083
[41] Du Y, Qiu G, Wang Y, Si M, Xu X, Wu W and Ye P D 2017 Nano Lett. 17 3965
[42] Huang X, Guan J, Lin Z, Liu B, Xing S, Wang W and Guo J 2017 Nano Lett. 17 4619
[43] Chen J, Dai Y, Ma Y, Dai X, Ho W and Xie M 2017 Nanoscale 9 15945
[44] Wang Y, Qiu G, Wang R, Huang S, Wang Q, Liu Y, Du Y, Goddard W A, Kim M J and Xu X 2018 Nat. Electron. 1 228
[45] Zhu Z, Cai X, Yi S, Chen J, Dai Y, Niu C, Guo Z, Xie M, Liu F and Cho J H 2017 Phys. Rev. Lett. 119 106101
[46] Qiao J, Pan Y, Yang F, Wang C, Chai Y and Ji W 2018 Sci. Bull. 63 159
[47] Wang Y, Xiao C, Chen M, Hua C, Zou J, Wu C, Jiang J, Yang S A, Lu Y and Ji W 2018 Mater. Horizons 5 521
[48] Chao L, Bukhtiar A, Xi S, Kong P P, Wang W P, Zhao H F, Yao Y, Zou B S, Li Y C, Li X D, Liu J, Jin C Q and Yu R C 2015 Chin. Phys. B 24 036401
[49] Tia X Q, Du S X and Gao H J 2008 Chin. Phys. B 17 286
[50] Zhang W, Wu Q, Yazyev O V, Weng H, Guo Z, Cheng W D and Chai G L 2018 Phys. Rev. B 98 115411
[51] Zhou D W, Pu C Y, Dominik S, Zhang G F, Lu C, Li G Q and Song J F 2013 Chin. Phys. Lett. 30 027401
[52] Wang C, Zhou X, Qiao J, Zhou L, Kong X, Pan Y, Cheng Z, Chai Y and Ji W 2018 Nanoscale 10 22263
[53] Qiao J, Zhou L and Ji W 2017 Chin. Phys. B 26 036803
[54] Hu Z X, Kong X, Qiao J, Normand B and Ji W 2016 Nanoscale 8 2740
[55] Jia Q, Kong X, Qiao J and Ji W 2016 Sci. China-Phys. Mech. Astron. 59 696811
[56] Du Y, Zhuang J, Wang J, Li Z, Liu H, Zhao J, Xu X, Feng H, Chen L and Wu K 2016 Sci. Adv. 2 e1600067
[57] Arafune R, Lin C L, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2013 Surf. Sci. 608 297
[58] Shuai Z 2020 Chin. Phys. Lett. 37 068103
[59] Zhang J, Zhang S, Qiu X, Wu Y, Sun Q, Zou J, Li T and Chen P 2020 Chin. Phys. Lett. 37 038101
[60] Zhou T, Zhu X G, Tong M, Zhang Y, Luo X B, Xie X, Feng W, Chen Q, Tan S and Wang Z Y 2019 Chin. Phys. Lett. 36 117303
[61] Agapito L A, Kioussis N, Goddard I I I W A and Ong N P 2013 Phys. Rev. Lett. 110 176401
[62] Blöchl P E 1994 Phys. Rev. B 50 17953
[63] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[64] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[65] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M and Dabo I 2009 J. Phys.: Condens. Matter 21 395502
[66] Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401
[67] Lee K, Murray É D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
[68] Klimeš J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201
[69] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[70] Thonhauser T, Cooper V R, Li S, Puzder A, Hyldgaard P and Langreth D C 2007 Phys. Rev. B 76 125112
[71] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[72] Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q and Xie L 2015 Nat. Commun. 6 1
[73] Zhao Y, Qiao J, Yu Z, Yu P, Xu K, Lau S P, Zhou W, Liu Z, Wang X and Ji W 2017 Adv. Mater. 29 1604230
[74] Qiao X F, Wu J B, Zhou L, Qiao J, Shi W, Chen T, Zhang X, Zhang J, Ji W and Tan P H 2016 Nanoscale 8 8324
[75] Ji W, Lu Z Y and Gao H 2006 Phys. Rev. Lett. 97 246101
[76] Wang C, Zhou X, Pan Y, Qiao J, Kong X, Kaun C C and Ji W 2018 Phys. Rev. B 97 245409
[77] Shulenburger L, Baczewski A D, Zhu Z, Guan J and Tomanek D 2015 Nano Lett. 15 8170
[78] Jamieson J and McWhan D 1965 J. Chem. Phys. 43 1149
[1] Delta-Davidson method for interior eigenproblem in many-spin systems
Haoyu Guan(关浩宇) and Wenxian Zhang(张文献). Chin. Phys. B, 2021, 30(3): 030205.
[2] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[3] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[4] Beam steering characteristics in high-power quantum-cascade lasers emitting at ∼ 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[5] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶)\ccclink, and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[6] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[7] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[8] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[9] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[10] Constructing reduced model for complex physical systems via interpolation and neural networks
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰). Chin. Phys. B, 2021, 30(3): 030204.
[11] Majorana stellar representation for mixed-spin ( s, 1/2) systems
Yu-Guo Su(苏玉国), Fei Yao(姚飞), Hong-Bin Liang(梁宏宾), Yan-Ming Che(车彦明), Li-Bin Fu(傅立斌), and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2021, 30(3): 030303.
[12] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[13] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[14] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[15] Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg-de Vries equation
Yulei Cao(曹玉雷), Peng-Yan Hu(胡鹏彦), Yi Cheng(程艺), and Jingsong He(贺劲松). Chin. Phys. B, 2021, 30(3): 030503.
No Suggested Reading articles found!