Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales1, N Casillas1, A Topete3, O Cervantes1, G Gonz\'alez1, J A Paz2, and M E Cano2,†
1Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C. P. 44430, Guadalajara, Jalisco, México 2Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, C. P. 47820, Ocotlán, Jalisco, México 3Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, C. P. 44340, Guadalajara, Jalisco, México
The physical characterization of a colloidal system of superficially modified magnetic nanoparticles (MNPs) is presented. The system consists of oleic acid-coated iron oxide nanoparticles (OAMNP) suspended in water. A structural analysis is carried out by using standard physical techniques to determine the diameter and shape of the MNPs and also the width of the coating shell. The colloidal stability and the polydispersity index of this ferrofluid are determined by using Zeta potential measurements. Additionally, the magnetic characterization is conducted by obtaining the DC magnetization loops, and the blocking temperatures are determined according to the ZFC–FC protocol. Finally, the values of power absorption density P of the ferrofluid are estimated by using a magneto-calorimetric procedure in a wide range of magnetic field amplitude H and frequency f. The experimental results exhibit spherical-like shape of OAMNP with (20 ± 4) nm in diameter. Due to the use of coating process, the parameters of the magnetization loops and the blocking temperatures are significantly modified. Hence, while the uncoated MNPs show a blocking state of the magnetization, the OAMNP are superparamagnetic above room temperature (300 K). Furthermore, the reached dependence P versus f and P versus H of the ferrofluid with coated MNPs are clearly fitted to linear and quadratic correlations, respectively, showing their accordance with the linear response theory.
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano† Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid 2020 Chin. Phys. B 29 100502
Fig. 1.
(a) Typical XRD spectra of uncoated (dark lines) and OAMNP (gray lines) samples, (b) close-up of the main peaks, (c) SEM micrograph of the OAMNP, (d) size distribution plot fitted to a normal data regression, (e) SEM of uncoated MNPs, and (f) corresponding plot including the data regression.
Fig. 2.
FTIR spectra of uncoated Fe3O4 nanoparticles (dark), pure oleic acid (blue), and OAMNP (gray).
Fig. 3.
(a) Relative mass Mversus temperature of OAMNP over the interval 30 °C < T < 850 °C and (b) corresponding derivative in the same temperature interval.
Fig. 4.
The pH-dependent (a) Zeta potential, (b) their corresponding hydrodynamic diameters, and (c) polydispersity index of water-suspended coated (open circles) and uncoated (black circles) MNPs.
Fig. 5.
(a) Magnetization loops at room temperature of uncoated and coated MNPs, and (b) their corresponding ZFC–FC graphs using H = 100 Oe.
Fig. 6.
Time dependent (a) temperature increment during 2 min applying H = 25 mT with five values of f, and (b) power density.
Fig. 7.
(a) Temperature increment during 2 min applying f = 330 kHz with five steps of H, and (b) the dependence PversusH with the corresponding quadratic data regression.
Jordan A, Scholz R, Wust P, Fähling H, Felix R 1999 J. Magn. Magn. Mater. 201 413 DOI: 10.1016/S0304-8853(99)00088-8
[6]
Jordan A, Scholz R, Wust P, Fähling H, Krause J, Wlodarczyk W, Sander B, Vogl T, Felix R 1997 International Journal of Hyperthermia 13 587 DOI: 10.3109/02656739709023559
[7]
Weissleder R A, Stark D D, Engelstad B L, Bacon B R, Compton C C, White D L, Jacobs P, Lewis J 1989 American Journal of Roentgenology 152 167 DOI: 10.2214/ajr.152.1.167
[8]
Philipse A P, Van Bruggen M P, Pathmamanoharan C 1994 Langmuir 10 92 DOI: 10.1021/la00013a014
[9]
Shen L, Laibinis P E, Hatton T A 1999 Langmuir 15 447 DOI: 10.1021/la9807661
[10]
De Vicente J, Delgado A V, Plaza R C, Durán J D, González-Caballero F 2000 Langmuir 16 7954 DOI: 10.1021/la0003490
[11]
Dresco P A, Zaitsev V S, Gambino R J, Chu B 1999 Langmuir 15 1945 DOI: 10.1021/la980971g
Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos I, Wang Y, Zamboulis D, Van Tendeloo G 2014 J. Phys. Chem. C 118 16209 DOI: 10.1021/jp5037266
Ahn T, Kim J H, Yang H M, Lee J W, Kim J D 2012 J. Phys. Chem. C 116 6069 DOI: 10.1021/jp211843g
[16]
Kievit F M, Stephen Z R, Veiseh O, Arami H, Wang T, Lai V P, Park J O, Ellenbogen R G, Disis M L, Zhang M 2012 ACS Nano 6 2591 DOI: 10.1021/nn205070h
[17]
Shkilnyy A, Munnier E, Hervé K, Soucé M, Benoit R, Cohen-Jonathan S, Limelette P, Saboungi M L, Dubois P, Chourpa I 2010 J. Phys. Chem. C 114 5850 DOI: 10.1021/jp9112188
[18]
Kolen’ko Y V, Bañbre-Loóez M, Rodríguez-Abreu C, Carbó-Argibay E, Sailsman A, Piñiro-Redondo Y, Cerqueira M F, Petrovykh D Y, Kovnir K, Lebedev O I, Rivas J 2014 J. Phys. Chem. C 118 8691 DOI: 10.1021/jp500816u
[19]
Soares P I P, Laia C A T, Carvalho A, Pereira L C J, Coutinho J T, Ferreira I M M, Novo C M M, Borges J P 2016 Appl. Surf. Sci. 383 240 DOI: 10.1016/j.apsusc.2016.04.181
Mazon E E, Villa-Martínez E, Hernández-Sámano A, Córdova-Fraga T, Ibarra-Sánchez J J, Calleja H A, Leyva Cruz J A, Barrera A, Estrada J C, Paz J A, Quintero L H 2017 Rev. Sci. Instrum. 88 084705 DOI: 10.1063/1.4998975
[28]
Mazon E E, Sámano A H, Calleja H, Quintero L H, Paz J A, Cano M E 2017 Measurement Science and Technology 28 095901 DOI: 10.1088/1361-6501/aa7be2
Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.