Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 100502    DOI: 10.1088/1674-1056/aba2dc
General Prev   Next  

Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid

S Rosales1, N Casillas1, A Topete3, O Cervantes1, G Gonz\'alez1, J A Paz2, and M E Cano2,
1 Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C. P. 44430, Guadalajara, Jalisco, México
2 Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, C. P. 47820, Ocotlán, Jalisco, México
3 Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, C. P. 44340, Guadalajara, Jalisco, México

The physical characterization of a colloidal system of superficially modified magnetic nanoparticles (MNPs) is presented. The system consists of oleic acid-coated iron oxide nanoparticles (OAMNP) suspended in water. A structural analysis is carried out by using standard physical techniques to determine the diameter and shape of the MNPs and also the width of the coating shell. The colloidal stability and the polydispersity index of this ferrofluid are determined by using Zeta potential measurements. Additionally, the magnetic characterization is conducted by obtaining the DC magnetization loops, and the blocking temperatures are determined according to the ZFC–FC protocol. Finally, the values of power absorption density P of the ferrofluid are estimated by using a magneto-calorimetric procedure in a wide range of magnetic field amplitude H and frequency f. The experimental results exhibit spherical-like shape of OAMNP with (20 ± 4) nm in diameter. Due to the use of coating process, the parameters of the magnetization loops and the blocking temperatures are significantly modified. Hence, while the uncoated MNPs show a blocking state of the magnetization, the OAMNP are superparamagnetic above room temperature (300 K). Furthermore, the reached dependence P versus f and P versus H of the ferrofluid with coated MNPs are clearly fitted to linear and quadratic correlations, respectively, showing their accordance with the linear response theory.

Keywords:  nanoparticles      ferrofluid      magnetic hyperthermia      functionalization  
Received:  01 February 2020      Revised:  13 June 2020      Accepted manuscript online:  06 July 2020
PACS:  05.70.-a (Thermodynamics)  
  47.65.Cb (Magnetic fluids and ferrofluids)  
  47.65.Cb (Magnetic fluids and ferrofluids)  
  87.85.jj (Biocompatibility)  
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano† Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid 2020 Chin. Phys. B 29 100502

Fig. 1.  

(a) Typical XRD spectra of uncoated (dark lines) and OAMNP (gray lines) samples, (b) close-up of the main peaks, (c) SEM micrograph of the OAMNP, (d) size distribution plot fitted to a normal data regression, (e) SEM of uncoated MNPs, and (f) corresponding plot including the data regression.

Fig. 2.  

FTIR spectra of uncoated Fe3O4 nanoparticles (dark), pure oleic acid (blue), and OAMNP (gray).

Fig. 3.  

(a) Relative mass M versus temperature of OAMNP over the interval 30 °C < T < 850 °C and (b) corresponding derivative in the same temperature interval.

Fig. 4.  

The pH-dependent (a) Zeta potential, (b) their corresponding hydrodynamic diameters, and (c) polydispersity index of water-suspended coated (open circles) and uncoated (black circles) MNPs.

Fig. 5.  

(a) Magnetization loops at room temperature of uncoated and coated MNPs, and (b) their corresponding ZFC–FC graphs using H = 100 Oe.

Fig. 6.  

Time dependent (a) temperature increment during 2 min applying H = 25 mT with five values of f, and (b) power density.

Fig. 7.  

(a) Temperature increment during 2 min applying f = 330 kHz with five steps of H, and (b) the dependence P versus H with the corresponding quadratic data regression.

Gupta A K, Gupta M 2005 Biomaterials 26 3995 DOI: 10.1016/j.biomaterials.2004.10.012
Wu W, Wu Z, Yu T, Jiang C, Kim W S 2015 Science and Technology of Advanced Materials 16 023501 DOI: 10.1088/1468-6996/16/2/023501
Babes L, Denizot B, Tanguy G, Le Jeune J J, Jallet P 1999 Journal of Colloid and Interface Science 212 482 DOI: 10.1006/jcis.1998.6053
Moore A, Marecos E, Bogdanov A Jr, Weissleder R 2000 Radiology 214 568 DOI: 10.1148/radiology.214.2.r00fe19568
Jordan A, Scholz R, Wust P, Fähling H, Felix R 1999 J. Magn. Magn. Mater. 201 413 DOI: 10.1016/S0304-8853(99)00088-8
Jordan A, Scholz R, Wust P, Fähling H, Krause J, Wlodarczyk W, Sander B, Vogl T, Felix R 1997 International Journal of Hyperthermia 13 587 DOI: 10.3109/02656739709023559
Weissleder R A, Stark D D, Engelstad B L, Bacon B R, Compton C C, White D L, Jacobs P, Lewis J 1989 American Journal of Roentgenology 152 167 DOI: 10.2214/ajr.152.1.167
Philipse A P, Van Bruggen M P, Pathmamanoharan C 1994 Langmuir 10 92 DOI: 10.1021/la00013a014
Shen L, Laibinis P E, Hatton T A 1999 Langmuir 15 447 DOI: 10.1021/la9807661
De Vicente J, Delgado A V, Plaza R C, Durán J D, González-Caballero F 2000 Langmuir 16 7954 DOI: 10.1021/la0003490
Dresco P A, Zaitsev V S, Gambino R J, Chu B 1999 Langmuir 15 1945 DOI: 10.1021/la980971g
Shen L, Qiao Y, Guo Y, Meng S, Yang G, Wu M, Zhao J 2014 Ceram. Int. 40 1519 DOI: 10.1016/j.ceramint.2013.07.037
Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos I, Wang Y, Zamboulis D, Van Tendeloo G 2014 J. Phys. Chem. C 118 16209 DOI: 10.1021/jp5037266
Petcharoen K, Sirivat A 2012 Mater. Sci. Eng. B 177 421 DOI: 10.1016/j.mseb.2012.01.003
Ahn T, Kim J H, Yang H M, Lee J W, Kim J D 2012 J. Phys. Chem. C 116 6069 DOI: 10.1021/jp211843g
Kievit F M, Stephen Z R, Veiseh O, Arami H, Wang T, Lai V P, Park J O, Ellenbogen R G, Disis M L, Zhang M 2012 ACS Nano 6 2591 DOI: 10.1021/nn205070h
Shkilnyy A, Munnier E, Hervé K, Soucé M, Benoit R, Cohen-Jonathan S, Limelette P, Saboungi M L, Dubois P, Chourpa I 2010 J. Phys. Chem. C 114 5850 DOI: 10.1021/jp9112188
Kolen’ko Y V, Bañbre-Loóez M, Rodríguez-Abreu C, Carbó-Argibay E, Sailsman A, Piñiro-Redondo Y, Cerqueira M F, Petrovykh D Y, Kovnir K, Lebedev O I, Rivas J 2014 J. Phys. Chem. C 118 8691 DOI: 10.1021/jp500816u
Soares P I P, Laia C A T, Carvalho A, Pereira L C J, Coutinho J T, Ferreira I M M, Novo C M M, Borges J P 2016 Appl. Surf. Sci. 383 240 DOI: 10.1016/j.apsusc.2016.04.181
Yang K, Peng H, Wen Y, Li N 2010 Appl. Surf. Sci. 256 3093 DOI: 10.1016/j.apsusc.2009.11.079
Maity D, Agrawal D C 2007 J. Magn. Magn. Mater 308 46 DOI: 10.1016/j.jmmm.2006.05.001
Mahdavi M, Ahmad M B, Haron M J, Namvar F, Nadi B, Rahman M Z A, Amin J 2013 Molecules 18 7533 DOI: 10.3390/molecules18077533
Li Y, Ma F, Su X, Shi L, Pan B, Sun Z, Hou Y 2014 Industrial & Engineering Chemistry Research 53 6718 DOI: 10.1021/ie500216c
Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370 DOI: 10.1016/S0304-8853(02)00706-0
Carrey J, Mehdaoui B, Respaud M 2011 J. Appl. Phys. 109 083921 DOI: 10.1063/1.3551582
Dearing J A, Bird P M, Dann R J, Benjamin S F 1997 Geophys. J. Int. 13 727 DOI: 10.1111/j.1365-246X.1997.tb01867.x
Mazon E E, Villa-Martínez E, Hernández-Sámano A, Córdova-Fraga T, Ibarra-Sánchez J J, Calleja H A, Leyva Cruz J A, Barrera A, Estrada J C, Paz J A, Quintero L H 2017 Rev. Sci. Instrum. 88 084705 DOI: 10.1063/1.4998975
Mazon E E, Sámano A H, Calleja H, Quintero L H, Paz J A, Cano M E 2017 Measurement Science and Technology 28 095901 DOI: 10.1088/1361-6501/aa7be2
Armitage D W, Le Veen H H, Pethig R 1983 Phys. Med. Biol. 28 31 DOI: 10.1088/1361-6501/aa7be2
Ingham B 2015 Crystallography Reviews 21 229 DOI: 10.1080/0889311X.2015.1024114
Dorofeev G A, Streletskii A N, Povstugar I V, Protasov A V, Elsukov E P 2012 Colloid Journal 74 675 DOI: 10.1134/S1061933X12060051
Zhang L Y, Dou Y H, Zhang L, Gu H C 2007 Chin. Phys. Lett. 24 483 DOI: 10.1088/0256-307X/24/2/050
Zheng H, Yang Y, Wen F S, Yi H B, Zhou D, Li F S 2009 Chin. Phys. Lett. 26 017501 DOI: 10.1088/0256-307X/26/1/017501
Wang Z L, Ma H, Wang F, Li M, Zhang L G, Xu X H 2016 Chin. Phys. Lett. 33 107501 DOI: 10.1088/0256-307X/33/10/107501
Wu N, Fu L, Su M, Aslam M, Wong K C, Dravid V P 2004 Nano Lett. 4 383 DOI: 10.1021/nl035139x
Nor W F, Soh S K, Azmi A A, Yusof M S, Shamsuddin M 2017 Malaysian Journal of Analytical Sciences 2 768 DOI: 10.17576/mjas-2018-2205-04
El-Hilo M, Chantrell R W, O’Grady Y K 1998 J. Appl. Phys. 5114 DOI: 10.1063/1.368761
Dormann J L, Bessais L, Fiorani D 1988 J. Phys. C: Solid State Phys. 21 2015 DOI: 10.1088/0022-3719/21/10/019
Knobel M, Socolovsky L M, Vargas J M 2004 Rev. Mex. Fís. 50 8
Nunes W C, Cebollada F, Knobel M, Zanchet D 2006 J. Appl. Phys. 99 08N705 DOI: 10.1063/1.2164418
[1] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[2] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[3] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[4] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[5] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[6] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[7] Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers
Tanlin Wei(魏坦琳), Lei Zhang(张蕾), Yong Zhang(张勇). Chin. Phys. B, 2020, 29(4): 048702.
[8] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[9] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[10] Sintering reaction and microstructure of MAl (M = Ni, Fe, and Mg) nanoparticles through molecular dynamics simulation
Yuwen Zhang(张宇文), Yonghe Deng(邓永和), Qingfeng Zeng(曾庆丰), Dadong Wen(文大东), Heping Zhao(赵鹤平), Ming Gao(高明), Xiongying Dai(戴雄英), and Anru Wu(吴安如)$. Chin. Phys. B, 2020, 29(11): 116601.
[11] Field-variable magnetic domain characterization of individual 10 nm Fe3O4 nanoparticles
Zheng-Hua Li(李正华), Xiang Li(李翔), Wei Lu(陆伟). Chin. Phys. B, 2019, 28(7): 077504.
[12] Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2019, 28(4): 047701.
[13] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[14] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[15] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
No Suggested Reading articles found!