Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077201    DOI: 10.1088/1674-1056/ab99ba

Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain

Hao Hong(洪浩)1, Yang Cheng(程阳)1, Chunchun Wu(吴春春)1,2, Chen Huang(黄琛)1, Can Liu(刘灿)1, Wentao Yu(于文韬)1, Xu Zhou(周旭)1, Chaojie Ma(马超杰)1, Jinhuan Wang(王金焕)1,3, Zhihong Zhang(张智宏)1, Yun Zhao(赵芸)3, Jie Xiong(熊杰)2, Kaihui Liu(刘开辉)1
1 State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China;
2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
3 School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract  Carrier lifetime is one of the most fundamental physical parameters that characterizes the average time of carrier recombination in any material. The control of carrier lifetime is the key to optimizing the device function by tuning the electro-optical conversion quantum yield, carrier diffusion length, carrier collection process, etc. Till now, the prevailing modulation methods are mainly by defect engineering and temperature control, which have limitations in the modulation direction and amplitude of the carrier lifetime. Here, we report an effective modulation on the ultrafast dynamics of photoexcited carriers in two-dimensional (2D) MoS2 monolayer by uniaxial tensile strain. The combination of optical ultrafast pump-probe technique and time-resolved photoluminescence (PL) spectroscopy reveals that the carrier dynamics through Auger scattering, carrier-phonon scattering, and radiative recombination keep immune to the strain. But strikingly, the uniaxial tensile strain weakens the trapping of photoexcited carriers by defects and therefore prolongs the corresponding carrier lifetime up to 440% per percent applied strain. Our results open a new avenue to enlarge the carrier lifetime of 2D MoS2, which will facilitate its applications in high-efficient optoelectronic and photovoltaic devices.
Keywords:  two-dimensional materials      carrier dynamics      strain      trap states  
Received:  18 May 2020      Revised:  29 May 2020      Published:  05 July 2020
PACS:  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
Fund: Project supported by the Natural Science Foundation of Beijing, China (Grant No. JQ19004), the Excellent Talents Training Support Fund of Beijing, China (Grant No. 2017000026833ZK11), the National Natural Science Foundation of China (Grant Nos. 51991340 and 51991342), the National Key Research and Development Program of China (Grant Nos. 2016YFA0300903 and 2016YFA0300804), the Key Research and Development Program of Guangdong Province, China (Grant Nos. 2019B010931001, 2020B010189001, 2018B010109009, and 2018B030327001), the Science Fund from the Municipal Science & Technology Commission of Beijing, China (Grant No. Z191100007219005), the Graphene Innovation Program of Beijing, China (Grant No. Z181100004818003), the Fund from the Bureau of Industry and Information Technology of Shenzhen City, China (Graphene platform 201901161512), the Innovative and Entrepreneurial Research Team Program of Guangdong Province, China (Grant No. 2016ZT06D348), and the Fund from the Science, Technology, and Innovation Commission of Shenzhen Municipality, China (Grant No. KYTDPT20181011104202253).
Corresponding Authors:  Kaihui Liu     E-mail:

Cite this article: 

Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉) Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain 2020 Chin. Phys. B 29 077201

[1] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[2] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[3] Zeng H L, Dai J F, Yao W, Xiao D and Cui X D 2012 Nat. Nanotechnol. 7 490
[4] Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[5] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L and Feng J 2012 Nat. Commun. 3 887
[6] Ye Z, Cao T, O'brien K, Zhu H, Yin X, Wang Y, Louie S G and Zhang X 2014 Nature 513 214
[7] Yang H, Kim S W, Chhowalla M and Lee Y H 2017 Nat. Phys. 13 931
[8] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[9] Liu C, Hong H, Wang Q, Liu P, Zuo Y, Liang J, Cheng Y, Zhou X, Wang J and Zhao Y 2019 Nanoscale 11 17195
[10] Cheng Y, Huang C, Hong H, Zhao Z and Liu K 2019 Chin. Phys. B 28 107304
[11] Yu W J, Liu Y, Zhou H, Yin A, Li Z, Huang Y and Duan X 2013 Nat. Nanotechnol. 8 952
[12] Britnell L, Ribeiro R, Eckmann A, Jalil R, Belle B, Mishchenko A, Kim Y J, Gorbachev R, Georgiou T and Morozov S 2013 Science 340 1311
[13] Massicotte M, Schmidt P, Vialla F, Schädler K G, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij K J and Koppens F H 2016 Nat. Nanotechnol. 11 42
[14] Sun Z, Martinez A and Wang F 2016 Nat. Photon. 10 227
[15] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D, Taniguchi T, Watanabe K, Kitamura K and Yao W 2014 Nat. Nanotechnol. 9 268
[16] Pospischil A, Furchi M M and Mueller T 2014 Nat. Nanotechnol. 9 257
[17] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[18] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944
[19] Zhang L, Chu W, Zheng Q, Benderskii A V, Prezhdo O V and Zhao J 2019 J. Phys. Chem. Lett. 10 6151
[20] Sun Y, Meng Y, Dai R, Yang Y, Xu Y, Zhu S, Shi Y, Xiu F and Wang F 2019 Opt. Lett. 44 4103
[21] Korn T, Heydrich S, Hirmer M, Schmutzler J and Schüller C 2011 Appl. Phys. Lett. 99 102109
[22] Wang R, Ruzicka B A, Kumar N, Bellus M Z, Chiu H Y and Zhao H 2012 Phys. Rev. B 86 045406
[23] Shi H Y, Yan R S, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G and Huang L B 2013 ACS Nano 7 1072
[24] Aleithan S H, Livshits M Y, Khadka S, Rack J J, Kordesch M E and Stinaff E 2016 Phys. Rev. B 94 035445
[25] He J Q, Kumar N, Bellus M Z, Chiu H Y, He D W, Wang Y S and Zhao H 2014 Nat. Commun. 5 5622
[26] Amani M, Lien D H, Kiriya D, Xiao J, Azcatl A, Noh J, Madhvapathy S R, Addou R, Santosh K and Dubey M 2015 Science 350 1065
[27] Lorchat E, López L E P, Robert C, Lagarde D, Froehlicher G, Taniguchi T, Watanabe K, Marie X and Berciaud S 2020 Nat. Nanotechnol. 15 283
[28] Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626
[29] He K, Poole C, Mak K F and Shan J 2013 Nano Lett. 13 2931
[30] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J and Javey A 2014 Nano Lett. 14 4592
[31] McCreary A, Ghosh R, Amani M, Wang J, Duerloo K A N, Sharma A, Jarvis K, Reed E J, Dongare A M and Banerjee S K 2016 ACS Nano 10 3186
[32] Ji J, Zhang A, Xia T, Gao P, Jie Y, Zhang Q and Zhang Q 2016 Chin. Phys. B 25 077802
[33] Doratotaj D, Simpson J R and Yan J A 2016 Phys. Rev. B 93 075401
[34] Li T H, Zhou Z H, Guo J H and Hu F R 2016 Chin. Phys. Lett. 33 046201
[35] Liang J, Zhang J, Li Z, Hong H, Wang J, Zhang Z, Zhou X, Qiao R, Xu J and Gao P 2017 Nano Lett. 17 7539
[36] Niehues I, Schmidt R, Drüppel M, Marauhn P, Christiansen D, Selig M, Berghäuser G, Wigger D, Schneider R and Braasch L 2018 Nano Lett. 18 1751
[37] Zhang L, He D, He J, Fu Y and Wang Y 2019 Chin. Phys. B 28 087201
[38] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385
[39] Yariv A 1997 Optical electronics in modern communications, 5th edn. (New York: Oxford University Press) p. 425
[1] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[2] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[3] Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers
Xiaoyu Hu(胡晓宇), Linlin Mou(牟琳琳), and Zunfeng Liu(刘遵峰)†. Chin. Phys. B, 2021, 30(1): 018401.
[4] Protein-protein docking with interface residue restraints
Hao Li(李豪) and Sheng-You Huang(黄胜友)†. Chin. Phys. B, 2021, 30(1): 018703.
[5] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[6] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[7] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[8] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
[9] Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure
Longxiang Xu(徐龙翔), Wengang Lu(吕文刚), Chen Hu(胡晨), Qixun Guo(郭奇勋), Shuai Shang(尚帅), Xiulan Xu(徐秀兰), Guanghua Yu(于广华), Yu Yan(岩雨), Lihua Wang(王立华), Jiao Teng(滕蛟). Chin. Phys. B, 2020, 29(7): 077304.
[10] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[11] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[12] Uncovering the internal structure of five-fold twinned nanowires through 3D electron diffraction mapping
Xin Fu(付新). Chin. Phys. B, 2020, 29(6): 068101.
[13] Constraint dependence of average potential energy of a passive particle in an active bath
Simin Ye(叶思敏), Peng Liu(刘鹏), Zixuan Wei(魏子轩), Fangfu Ye(叶方富), Mingcheng Yang(杨明成), Ke Chen(陈科). Chin. Phys. B, 2020, 29(5): 058201.
[14] Hunting problems of multi-quadrotor systems via bearing-based hybrid protocols with hierarchical network
Zhen Xu(徐振), Xin-Zhi Liu(刘新芝), Qing-Wei Chen(陈庆伟), Zi-Xing Wu(吴梓杏). Chin. Phys. B, 2020, 29(5): 050701.
[15] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
No Suggested Reading articles found!