Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 098103    DOI: 10.1088/1674-1056/ab99b9
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature

Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳)
Department of Physics and Electrical Engineering, Tongren University, Tongren 554300, China
Abstract  Diamond crystallization was carried out with CH4N2S additive in the FeNiCo-C system at pressure 6.0 GPa and temperature ranging from 1290 ℃ to 1300 ℃. The crystallization qualities of the synthetic crystals were characterized by Raman spectra and the Raman peaks located at 1331 cm-1. Fourier transform infrared (FTIR) results showed that the hydrogen-related absorption peak of the as-grown diamond was at 2920 cm-1, respectively. Interestingly, A-center nitrogen was observed in the obtained diamond and the characteristic absorption peaks located at 1095 cm-1 and 1282 cm-1. Especially, the absorption peak at 1426 cm-1 attributing to the aggregation B-center nitrogen defect was distinctly found when the CH4N2S content reached 0.3 mg in the synthesis system, which was extremely rare in synthetic diamond. Furthermore, optical color centers in the synthesized crystals were investigated by photoluminescence (PL).
Keywords:  high pressure and high temperature      diamond      crystallization      characteristics  
Received:  06 May 2020      Revised:  28 May 2020      Published:  05 September 2020
PACS:  92.60.hv (Pressure, density, and temperature)  
  81.05.ug (Diamond)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  61.72.jn (Color centers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604246), Natural Science Foundation of Guizhou Province Education Department of China (Grant Nos. KY2017053 and KY2018343), Natural Science Foundation of Guizhou Procince Science and Technology Agency of China (Grant Nos. 20181163 and LH 20177311), and Outstanding Young Science and Technology Talents of Guizhou Pronice of China (Grant No. 20195673).
Corresponding Authors:  Yong Li     E-mail:  likaiyong6@163.com

Cite this article: 

Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳) Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature 2020 Chin. Phys. B 29 098103

[1] Guo M M, Li S S, Hu M H, Su T C, Wang J Z, Gao G J, You Y and Nie Y 2020 Chin. Phys. B 29 018101
[2] Li Y, Li Y D, Wang Y, Zhang J, Song M S, She Y C and Chen X Z 2018 Cryst. Eng. Comm. 20 4127
[3] Angerer A, Streltsov K, Astner T, Putz S, Sumiya H, Onoda S, Isoya J, Munro W J, Nemoto K, Schmiedmayer J and Majer J 2018 Nat. Phys. 14 1168
[4] Dutt M V G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007 Science 316 1312
[5] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
[6] Zhang J F, Yang P Z, Ren Z Y, Zhang J C, Xu S R, Zhang C F, Xu L and Hao Y 2018 Acta Phys. Sin. 67 068101 (in Chinese)
[7] Xu H, Liu J J, Ye H T, Coathup D J, Khomich A V and Hu X J 2018 Chin. Phys. B 27 096104
[8] Hu M H, Bi N, Li S S, Su T C, Hu Q, Jia X P and Ma H A 2015 Chin. Phys. B 24 038101
[9] Wang J Z, Li S S, Hu M H, Su T C, Gao G J, Guo M M, You Y and Nie Y 2020 Int. J. Refract. Met. Hard Mater. 87 105150
[10] Briddon P R and Jones R 1993 Physica B 185 179
[11] Salustro S, Ferrari A M, Gentile F S, Denmarais J K and Rérat M 2018 J. Phys. Chem. A 122 594
[12] Sutherland G B B M, Blackwell D E and Simeral W G 1954 Nature 174 901
[13] Li Y, Jia X P, Hu M H, Yan B M, Zhou Z X, Fang C, Zhang Z F and Ma H A 2012 Int. J. Refract. Met. Hard Mater. 34 27
[14] Guo L S, Ma H A, Chen L C, Chen N, Miao X Y, Wang Y, Fang S, Yang Z Q, Fang C and Jia X P 2018 Cryst. Eng. Comm. 20 5457
[15] Li Y, Jia X P, Yan B M, Zhou Z X, Fang C, Zhang Z F, Sun S S and Ma H A 2012 Journal of Crystal Growth 359 49
[16] Pal'yanov Y N, Kupriyanov I N, Borzdov Y M, Sokol A G and Khokhryakov A F 2009 Cryst. Growth Des. 9 2922
[17] Meng Y F, Yan C S, Lai J, Krasnicki S, Shu H Y, Yu T, Liang Q, Mao H K and Hemley Russell J 2008 Proc. Acad. Natl. Sci. USA 105 17620
[18] Akaishi M, Handa H, Sato Y, Setaka N, Ohsawa T and Fukunaga O 1982 J. Mater. Sci. 17 193
[19] Fuchs F, Wild C, Schwarz K and Koidl P 1995 Diam. Relat. Mater. 4 652
[20] Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F and Ma H A 2012 Chin. Phys. B 21 058101
[21] Huang G F, Jia X P, Yin J W, Ma H A and Zheng Y J 2013 Int. J. Refractory Metals and Hard Mater 41 517
[22] Liu X B, Jia X P, Fang C and Ma H A 2016 Cryst. Eng. Comm. 18 8506
[23] Chen N, Ma H A, Yan B M, Chen L C, Chen L X, Guo L S, Miao X Y, Fang C and Jia X P 2018 Cryst. Growth Des. 18 3870
[24] Mainwood A 1994 Phys. Rev. B 49 7934
[25] Li Y, Li S S, She Y C and Guan X M 2017 Journal of Synthetic Crystals 46 778 (in Chinese)
[26] Lindblom J, Hölsä J, Papunen H and Häkkänen H 2005 American Mineralogist 90 428
[27] Stanwix P L, Pham L M, Maze J R, Le Sage D, Yeung T K, Cappelllaro P, Hemmer P R, Yacoby, Lukin M D and Walsworth R L 2010 Phys. Rev. B 82 201201
[28] Chen L C, Miao X Y, Ma H A, Guo L S, Wang Z K, Yang Z Q, Fang C and Jia X P 2018 Cryst. Eng. Comm. 20 7164
[29] Rabeau J R, Chin Y L, Prawer S, Jelezko F, Gaebel T and Wrachtrup J 2005 Appl. Phys. Lett. 86 131926
[1] Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments
Lin Liu(刘琳), Xiu-Mei Zhang(张秀梅), and Xiu-Ming Wang(王秀明). Chin. Phys. B, 2021, 30(2): 024301.
[2] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[3] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[4] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[5] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[6] Effects of microwave oxygen plasma treatments on microstructure and Ge-V photoluminescent properties of diamond particles
Ling-Xiao Sheng(盛凌霄), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(8): 088101.
[7] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[8] Comparison of cavities and extended defects formed in helium-implanted 6H-SiC at room temperature and 750 ℃
Qing Liao(廖庆), Bingsheng Li(李炳生), Long Kang(康龙), Xiaogang Li(李小刚). Chin. Phys. B, 2020, 29(7): 076103.
[9] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
[10] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[11] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[12] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[13] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[14] Improvements in reverse breakdown characteristics of THz GaAs Schottky barrier varactor based on metal-brim structure
Lu-Wei Qi(祁路伟), Xiao-Yu Liu(刘晓宇), Jin Meng(孟进), De-Hai Zhang(张德海), Jing-Tao Zhou(周静涛). Chin. Phys. B, 2020, 29(5): 057306.
[15] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
No Suggested Reading articles found!