INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Flux-to-voltage characteristic simulation of superconducting nanowire interference device |
Xing-Yu Zhang(张兴雨)1,2, Yong-Liang Wang(王永良)1,3, Chao-Lin Lv(吕超林)1,3, Li-Xing You(尤立星)1,2,3, Hao Li(李浩)1,3, Zhen Wang(王镇)1,3, Xiao-Ming Xie(谢晓明)1,3 |
1 State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences(CAS), Shanghai 200050, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 CAS Center for Excellence in Superconducting Electronics, Shanghai 200050, China |
|
|
Abstract Inspired by recent discoveries of the quasi-Josephson effect in shunted nanowire devices, we propose a superconducting nanowire interference device in this study, which is a combination of parallel ultrathin superconducting nanowires and a shunt resistor. A simple model based on the switching effect of nanowires and fluxoid quantization effect is developed to describe the behavior of the device. The current-voltage characteristic and flux-to-voltage conversion curves are simulated and discussed to verify the feasibility. Appropriate parameters of the shunt resistor and inductor are deduced for fabricating the devices.
|
Received: 09 March 2020
Revised: 08 April 2020
Accepted manuscript online: 07 May 2020
|
PACS:
|
85.25.Am
|
(Superconducting device characterization, design, and modeling)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304000), the National Natural Science Foundation of China (Grant Nos. 61671438 and 61827823), the Science and Technology Commission of Shanghai Municipality, China (Grant No. 18511110200), and the Program of Shanghai Academic/Technology Research Leader, China (Grant No. 18XD1404600). |
Corresponding Authors:
Yong-Liang Wang, Li-Xing You
E-mail: wangyl@mail.sim.ac.cn;lxyou@mail.sim.ac.cn
|
Cite this article:
Xing-Yu Zhang(张兴雨), Yong-Liang Wang(王永良), Chao-Lin Lv(吕超林), Li-Xing You(尤立星), Hao Li(李浩), Zhen Wang(王镇), Xiao-Ming Xie(谢晓明) Flux-to-voltage characteristic simulation of superconducting nanowire interference device 2020 Chin. Phys. B 29 098501
|
[1] |
Clarke J and Braginski A I 2004 SQUID Handbook, Vol. 1, Fundamentals and technology of SQUIDs and SQUID systems (Wiley-VCH)
|
[2] |
Granata C and Vettoliere A 2016 Phys. Rep. 614 1
|
[3] |
Liu X, Liu X, Wang H, Chen L and Wang Z 2015 Physica C 515 36
|
[4] |
Petkovic I, Lollo A, Glazman L I and Harris J G 2016 Nat. Commun. 7 13551
|
[5] |
Fink H, López A and Maynard R 1982 Phys. Rev. B 26 5237
|
[6] |
Fink H, Grünfeld V and López A 1987 Phys. Rev. B 35 35
|
[7] |
Moshchalkov V, Gielen L, Dhallé M, Van Haesendonck C and Bruynseraede Y 1993 Nature 361 617
|
[8] |
Hadfield R H, Miller A J, Nam S W, Kautz R L and Schwall R E 2005 Appl. Phys. Lett. 87 203505
|
[9] |
You L X, Liu D K and Yang X Y (Chinese Patent) 102694117A [2015-08-19]
|
[10] |
Brenner M W, Roy D, Shah N and Bezryadin A 2012 Phys. Rev. B 85 224507
|
[11] |
Liu D K, You L X, Chen S J, Yang X Y, Wang Z, Wang Y L, Xie X M and Jiang M H 2013 IEEE Trans. Appl. Supercond. 23 2200804
|
[12] |
Toomey E, Zhao Q Y, McCaughan A N and Berggren K K 2018 Phys. Rev. Appl. 9 064021
|
[13] |
Toomey E, Onen M, Colangelo M, Butters B A, McCaughan A N and Berggren K K 2019 Phys. Rev. Appl. 11 034006
|
[14] |
McCaughan A N, Toomey E, Schneider M, Berggren K K and Nam S W 2019 Supercond. Sci. Technol. 32 015005
|
[15] |
Onen M, Turchetti M, Butters B A, Bionta M R, Keathley P D and Berggren K K 2020 Nano Lett. 20 664
|
[16] |
Yang J K W, Kerman A J, Dauler E A, Anant V, Rosfjord K M and Berggren K K 2007 IEEE Trans. Appl. Supercond. 17 581
|
[17] |
Nicolich K L, Cahall C, Islam N T, Lafyatis G P, Kim J, Miller A J and Gauthier D J 2019 Phys. Rev. Appl. 12 034020
|
[18] |
Berggren K K, Zhao Q Y, Abebe N S, Chen M, Ravindran P, McCaughan A N and Bardin J 2018 Supercond. Sci. Technol. 31 055010
|
[19] |
Kerman A J, Dauler E A, Keicher W E, Yang J K W, Berggren K K, Gol'tsman G and Voronov B 2006 Appl. Phys. Lett. 88 111116
|
[20] |
Kerman A J, Yang J K W, Molnar R J, Dauler E A and Berggren K K 2009 Phys. Rev. B 79 100509
|
[21] |
Engel A, Renema J J, Il'in K and Semenov A 2015 Supercond. Sci. Technol. 28 114003
|
[22] |
Sidorova M, Semenov A, Hubers H W, Charaev I, Kuzmin A, Doerner S and Siegel M 2017 Phys. Rev. B 96 184504
|
[23] |
Jaklevic R, Lambe J, Silver A and Mercereau J 1964 Phys. Rev. Lett. 12 159
|
[24] |
Hazra D 2019 Phys. Rev. B 99 144505
|
[25] |
Deaver B S and Fairbank W M 1961 Phys. Rev. Lett. 7 43
|
[26] |
Fulton T A 1970 Solid State Commun. 8 1353
|
[27] |
Zhu D, Colangelo M, Korzh B A, Zhao Q Y, Frasca S, Dane A E, Velasco A E, Beyer A D, Allmaras J P and Ramirez E 2019 Appl. Phys. Lett. 114 042601
|
[28] |
Yang X, You L, Zhang L, Lv C, Li H, Liu X, Zhou H and Wang Z 2018 IEEE Trans. Appl. Supercond. 28 1
|
[29] |
Annunziata A J, Quaranta O, Santavicca D F, Casaburi A, Frunzio L, Ejrnaes M, Rooks M J, Cristiano R, Pagano S, Frydman A and Prober D E 2010 J. Appl. Phys. 108 084507
|
[30] |
Liu D K, Chen S J, You L X, Wang Y L, Miki S, Wang Z, Xie X M and Jiang M H 2012 Appl. Phys. Express 5 125202
|
[31] |
Biswas S, Winkelmann C B, Courtois H, Dauxois T, Biswas H and Gupta A K 2018 arXiv: 1807.07720v3 [cond-mat.supr-con]
|
[32] |
Makise K, Terai H and Zhen W 2012 Phys. Proc. 36 116
|
[33] |
McCaughan A N, Zhao Q and Berggren K K 2016 Sci. Rep. 6 28095
|
[34] |
Cherednichenko S, Acharya N, Novoselov E and Drakinskiy V 2019 arXiv: 1911.01480 [cond-mat.supr-con]
|
[35] |
Shen X F, Yang X Y, You L X 2010 Chin. Phys. Lett. 27 087404
|
[36] |
Liu J, Xiao L, Liu Y, Cao L and Shen Z 2019 Chin. Phys. B 28 028504
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|