Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 098501    DOI: 10.1088/1674-1056/ab90f4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Flux-to-voltage characteristic simulation of superconducting nanowire interference device

Xing-Yu Zhang(张兴雨)1,2, Yong-Liang Wang(王永良)1,3, Chao-Lin Lv(吕超林)1,3, Li-Xing You(尤立星)1,2,3, Hao Li(李浩)1,3, Zhen Wang(王镇)1,3, Xiao-Ming Xie(谢晓明)1,3
1 State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences(CAS), Shanghai 200050, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 CAS Center for Excellence in Superconducting Electronics, Shanghai 200050, China
Abstract  Inspired by recent discoveries of the quasi-Josephson effect in shunted nanowire devices, we propose a superconducting nanowire interference device in this study, which is a combination of parallel ultrathin superconducting nanowires and a shunt resistor. A simple model based on the switching effect of nanowires and fluxoid quantization effect is developed to describe the behavior of the device. The current-voltage characteristic and flux-to-voltage conversion curves are simulated and discussed to verify the feasibility. Appropriate parameters of the shunt resistor and inductor are deduced for fabricating the devices.
Keywords:  superconducting nanowire      switching effect      flux-to-voltage conversion      interference device  
Received:  09 March 2020      Revised:  08 April 2020      Accepted manuscript online:  07 May 2020
PACS:  85.25.Am (Superconducting device characterization, design, and modeling)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304000), the National Natural Science Foundation of China (Grant Nos. 61671438 and 61827823), the Science and Technology Commission of Shanghai Municipality, China (Grant No. 18511110200), and the Program of Shanghai Academic/Technology Research Leader, China (Grant No. 18XD1404600).
Corresponding Authors:  Yong-Liang Wang, Li-Xing You     E-mail:  wangyl@mail.sim.ac.cn;lxyou@mail.sim.ac.cn

Cite this article: 

Xing-Yu Zhang(张兴雨), Yong-Liang Wang(王永良), Chao-Lin Lv(吕超林), Li-Xing You(尤立星), Hao Li(李浩), Zhen Wang(王镇), Xiao-Ming Xie(谢晓明) Flux-to-voltage characteristic simulation of superconducting nanowire interference device 2020 Chin. Phys. B 29 098501

[1] Clarke J and Braginski A I 2004 SQUID Handbook, Vol. 1, Fundamentals and technology of SQUIDs and SQUID systems (Wiley-VCH)
[2] Granata C and Vettoliere A 2016 Phys. Rep. 614 1
[3] Liu X, Liu X, Wang H, Chen L and Wang Z 2015 Physica C 515 36
[4] Petkovic I, Lollo A, Glazman L I and Harris J G 2016 Nat. Commun. 7 13551
[5] Fink H, López A and Maynard R 1982 Phys. Rev. B 26 5237
[6] Fink H, Grünfeld V and López A 1987 Phys. Rev. B 35 35
[7] Moshchalkov V, Gielen L, Dhallé M, Van Haesendonck C and Bruynseraede Y 1993 Nature 361 617
[8] Hadfield R H, Miller A J, Nam S W, Kautz R L and Schwall R E 2005 Appl. Phys. Lett. 87 203505
[9] You L X, Liu D K and Yang X Y (Chinese Patent) 102694117A [2015-08-19]
[10] Brenner M W, Roy D, Shah N and Bezryadin A 2012 Phys. Rev. B 85 224507
[11] Liu D K, You L X, Chen S J, Yang X Y, Wang Z, Wang Y L, Xie X M and Jiang M H 2013 IEEE Trans. Appl. Supercond. 23 2200804
[12] Toomey E, Zhao Q Y, McCaughan A N and Berggren K K 2018 Phys. Rev. Appl. 9 064021
[13] Toomey E, Onen M, Colangelo M, Butters B A, McCaughan A N and Berggren K K 2019 Phys. Rev. Appl. 11 034006
[14] McCaughan A N, Toomey E, Schneider M, Berggren K K and Nam S W 2019 Supercond. Sci. Technol. 32 015005
[15] Onen M, Turchetti M, Butters B A, Bionta M R, Keathley P D and Berggren K K 2020 Nano Lett. 20 664
[16] Yang J K W, Kerman A J, Dauler E A, Anant V, Rosfjord K M and Berggren K K 2007 IEEE Trans. Appl. Supercond. 17 581
[17] Nicolich K L, Cahall C, Islam N T, Lafyatis G P, Kim J, Miller A J and Gauthier D J 2019 Phys. Rev. Appl. 12 034020
[18] Berggren K K, Zhao Q Y, Abebe N S, Chen M, Ravindran P, McCaughan A N and Bardin J 2018 Supercond. Sci. Technol. 31 055010
[19] Kerman A J, Dauler E A, Keicher W E, Yang J K W, Berggren K K, Gol'tsman G and Voronov B 2006 Appl. Phys. Lett. 88 111116
[20] Kerman A J, Yang J K W, Molnar R J, Dauler E A and Berggren K K 2009 Phys. Rev. B 79 100509
[21] Engel A, Renema J J, Il'in K and Semenov A 2015 Supercond. Sci. Technol. 28 114003
[22] Sidorova M, Semenov A, Hubers H W, Charaev I, Kuzmin A, Doerner S and Siegel M 2017 Phys. Rev. B 96 184504
[23] Jaklevic R, Lambe J, Silver A and Mercereau J 1964 Phys. Rev. Lett. 12 159
[24] Hazra D 2019 Phys. Rev. B 99 144505
[25] Deaver B S and Fairbank W M 1961 Phys. Rev. Lett. 7 43
[26] Fulton T A 1970 Solid State Commun. 8 1353
[27] Zhu D, Colangelo M, Korzh B A, Zhao Q Y, Frasca S, Dane A E, Velasco A E, Beyer A D, Allmaras J P and Ramirez E 2019 Appl. Phys. Lett. 114 042601
[28] Yang X, You L, Zhang L, Lv C, Li H, Liu X, Zhou H and Wang Z 2018 IEEE Trans. Appl. Supercond. 28 1
[29] Annunziata A J, Quaranta O, Santavicca D F, Casaburi A, Frunzio L, Ejrnaes M, Rooks M J, Cristiano R, Pagano S, Frydman A and Prober D E 2010 J. Appl. Phys. 108 084507
[30] Liu D K, Chen S J, You L X, Wang Y L, Miki S, Wang Z, Xie X M and Jiang M H 2012 Appl. Phys. Express 5 125202
[31] Biswas S, Winkelmann C B, Courtois H, Dauxois T, Biswas H and Gupta A K 2018 arXiv: 1807.07720v3 [cond-mat.supr-con]
[32] Makise K, Terai H and Zhen W 2012 Phys. Proc. 36 116
[33] McCaughan A N, Zhao Q and Berggren K K 2016 Sci. Rep. 6 28095
[34] Cherednichenko S, Acharya N, Novoselov E and Drakinskiy V 2019 arXiv: 1911.01480 [cond-mat.supr-con]
[35] Shen X F, Yang X Y, You L X 2010 Chin. Phys. Lett. 27 087404
[36] Liu J, Xiao L, Liu Y, Cao L and Shen Z 2019 Chin. Phys. B 28 028504
[1] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[2] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[3] Pulse-gated mode of commercial superconducting nanowire single photon detectors
Fan Liu(刘帆), Mu-Sheng Jiang(江木生), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(4): 040302.
[4] Wavelength dependence of intrinsic detection efficiency of NbN superconducting nanowire single-photon detector
Yong Wang(王勇), Hao Li(李浩), Li-Xing You(尤立星), Chao-Lin Lv(吕超林), He-Qing Wang(王河清), Xing-Yu Zhang(张兴雨), Wei-Jun Zhang(张伟君), Hui Zhou(周慧), Lu Zhang(张露), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇). Chin. Phys. B, 2019, 28(7): 078502.
[5] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[6] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[7] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[8] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[9] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[10] Low-Tc direct current superconducting quantum interference device magnetometer-based 36-channel magnetocardiography system in a magnetically shielded room
Qiu Yang (邱阳), Li Hua (李华), Zhang Shu-Lin (张树林), Wang Yong-Liang (王永良), Kong Xiang-Yan (孔祥燕), Zhang Chao-Xiang (张朝祥), Zhang Yong-Sheng (张永升), Xu Xiao-Feng (徐小峰), Yang Kang (杨康), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2015, 24(7): 078501.
[11] Tunable coplanar waveguide resonator with nanowires
Zhou Yu (周渝), Jia Tao (郏涛), Zhai Ji-Quan (翟计全), Wang Cheng (汪橙), Zhong Xian-Qian (钟先茜), Cao Zhi-Min (曹志敏), Sun Guo-Zhu (孙国柱), Kang Lin (康琳), Wu Pei-Heng (吴培亨). Chin. Phys. B, 2015, 24(4): 047403.
[12] Frequency-tunable transmon in a three-dimensional copper cavity
Pan Jia-Zheng (潘佳政), Cao Zhi-Min (曹志敏), Fan Yun-Yi (范云益), Zhou Yu (周渝), Lan Dong (兰栋), Liu Yu-Hao (刘宇浩), Chen Zhi-Ping (陈志平), Li Yong-Chao (李永超), Cao Chun-Hai (曹春海), Xu Wei-Wei (许伟伟), Kang Lin (康琳), Chen Jian (陈健), Yu Hai-Feng (于海峰), Yu Yang (于扬), Sun Guo-Zhu (孙国柱), Wu Pei-Heng (吴培亨). Chin. Phys. B, 2015, 24(11): 110301.
[13] Fabrication and properties of high performance YBa2Cu3O7-δ radio frequency SQUIDs with step-edge Josephson junctions
Liu Zheng-Hao (刘政豪), Wei Yu-Ke (魏玉科), Wang Da (王达), Zhang Chen (张琛), Ma Ping (马平), Wang Yue (王越). Chin. Phys. B, 2014, 23(9): 097401.
[14] Study on signal intensity of low field nuclear magnetic resonance via indirect coupling measurement
Jiang Feng-Ying (蒋凤英), Wang Ning (王宁), Jin Yi-Rong (金贻荣), Deng Hui (邓辉), Tian Ye (田野), Lang Pei-Lin (郎佩琳), Li Jie (李洁), Chen Ying-Fei (陈莺飞), Zheng Dong-Ning (郑东宁). Chin. Phys. B, 2013, 22(4): 047401.
[15] Switching effects in superconductor/ferromagnet/superconductor graphene junctions
Li Xiao-Wei (李晓薇), Liu Dan (刘丹), Bao Yan-Hui (鲍艳辉). Chin. Phys. B, 2013, 22(12): 127401.
No Suggested Reading articles found!