Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097101    DOI: 10.1088/1674-1056/ab99ad
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations

N A Noor1, Nosheen Mushahid1, Aslam Khan2, Nessrin A. Kattan3, Asif Mahmood4, Shahid M. Ramay5
1 Department of Physics, University of Lahore, Lahore 54000, Pakistan;
2 Physics Department, KFUEIT, Rahim Yar Khan, Punjab, Pakistan;
3 Department of Physics, Faculty of Science, Taibah University, Medina, Saudi Arabia;
4 College of Engineering, Chemical Engineering Department, King Saud University Riyadh, Riyadh 11451, Saudi Arabia;
5 Department of Physics and Astronomy, College of Science, King Saud University Riyadh, Riyadh 11451, Saudi Arabia
Abstract  We investigate structural, mechanical, thermodynamic, and thermoelectric properties of vanadium-based XVO3 (X=Na, K, Rb) materials using density functional theory (DFT) based calculations. The structural and thermodynamic stabilities are probed by the tolerance factor (0.98, 1.01, and 1.02) with the negative value of enthalpy of formation. Mechanical properties are analyzed in the form of Born stability criteria, ductile/brittle nature (Poisson and Pugh's ratios) and anisotropy factor. To explore the electronic transport properties, we study the electrical conductivity, thermal conductivity, Seebeck coefficient and power factor in terms of chemical potential and temperature. High values of Seebeck coefficient at room temperature may find the potential of the studied perovskites in thermo-electrics devices.
Keywords:  density functional theory      Born stability criteria      Seebeck coefficient      power factor  
Received:  10 January 2020      Revised:  27 May 2020      Published:  05 September 2020
PACS:  71.15.-m (Methods of electronic structure calculations)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  31.15.A- (Ab initio calculations)  
Corresponding Authors:  N A Noor, Asif Mahmood     E-mail:  naveedcssp@gmail.com;ahayat@ksu.edu.sa

Cite this article: 

N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations 2020 Chin. Phys. B 29 097101

[1] Lines M E and Glass A M 2001 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press)
[2] Schindler M, Hawthorne F C and Baur W H 2000 Chem. Mater. 12 1248
[3] Singh D J 2006 Phys. Rev. B 73 094102
[4] Selbin J 1965 Chem. Rev. 65 153
[5] Hawthorne F and Calvo C 1977 J. Solid State Chem. 22 157
[6] Erum N and Iqbal M A 2017 Chin. Phys. B 26 047102
[7] Shpanchenko R V, Chernaya V V, Tsirlin A A, Chizhov P S, Sklovsky D E, Antipov E V, Khlybov E P, Pomjakushin V, Balagurov A M, Medvedeva J E, Kaul E E and Geibel C 2004 Chem. Mater. 16 3267
[8] Belik A A, Azuma M, Saito T, Shimakawa Y and Takano M 2005 Chem. Mater. 17 269
[9] Hui S 2001 Solid State Ionics 143 275
[10] Li Y, Lu Y, Zhao C, Hu Y S, Titirici M M, Li H, Huang X and Chen L 2017 Energy Storage Mater. 7 130
[11] Larcher D and Tarascon J M 2015 Nat. Chem. 7 19
[12] Ponomarev B K, Red'kin B S and Sinitsyn V V 2012 Inorg. Mater.: Appl. Res. 3 338
[13] Nakajima T, Isobe M, Tsuchiya T, Ueda Y and Kumagai T 2008 Nat. Mater. 7 735
[14] Nakajima T, Isobe M, Tsuchiya T, Ueda Y and Kumagai T 2009 J. Lumin. 129 1598
[15] Belik A A and Takayama-Muromachi E 2006 J. Solid State Chem. 179 1650
[16] Patwe S J and Rao U R K 1995 J. Mater. Sci. Lett. 14 1702
[17] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K, An Augmented Plane Wave+local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universiẗat Wien Austria)
[18] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[19] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[20] Koller D, Tran F and Blaha P 2011 Phys. Rev. B 83 195134
[21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Saeed Y, Kachmar A and Carignano M A 2017 J. Phys. Chem. C 121 1399
[23] Saeed Y, Singh N and Schwingenschlögl U 2012 Adv. Functn. Mater. 22 2792
[24] Saeed Y, Singh N and Schwingenschlögl U 2014 Appl. Phys. Lett. 104 033105
[25] Saeed Y, Singh N and Schwingenschlögl U 2014 Appl. Phys Lett. 105 031915
[26] Singh N, Saeed Y and Schwingenschlögl U 2014 Phys. Status Solidi RRL 8 849
[27] Madsen G K and Singh D J 2006 Comput. Phys. Commun. 175 67
[28] Folland G B 1995 Introduction to Partial Differential Equations (Princeton: Princeton University Press)
[29] Kokalj A 1999 J. Mol. Graph. Modell. 17 176
[30] Stoumpos C C, Cao D H, Clark D J et al. 2016 Chem. Mater. 28 2852
[31] Topor L, Navrotsky A, Zhao Y and Weidner D J 1997 J. Solid State Chem. 132 131
[32] Ji X, Yu Y, Ji J, Long J, Chen J and Liu D 2015 J. Alloy Compd. 623 304
[33] Mahmood Q, Javed A, Murtaza G and Alay-E-Abbas S 2015 Mater. Chem. Phys. 162 831
[34] Sajjad M, Alay-E-Abbas S, Zhang H, Noor N, Saeed Y, Shakir I and Shaukat A 2015 J. Magn. Magn. Mater. 390 78
[35] Behram R B, Iqbal M, Alay-E-Abbas S, Sajjad M, Yaseen M, Arshad M I and Murtaza G 2016 Mater. Sci. Semicond. Process. 41 297
[36] Nazir S, Mahmood I, Noor N, Laref A and Sajjad M 2019 High Energy Density Phys. 33 100715
[37] Roknuzzaman M, Ostrikov K, Wang H, Du A and Tesfamichael T 2017 Sci. Rep. 7 1
[38] Ciftci Y, Çolakoglu K, Deligoz E and Ozisik H 2008 Mater. Chem. Phys. 108 120
[39] Hao Y J, Chen X R, Cui H L and Bai Y L 2006 Physica B 382 118
[40] Noor N, Mahmood Q, Rashid M, Haq B U and Laref A 2018 Ceram. Int. 44 13750
[41] Sajjad M, Singh N, Sattar S, Wolf S D and Schwingenschlögl U 2019 ACS Appl. Energy Mater. 2 3004
[42] Hassan M, Shahid A and Mahmood Q 2018 Solid State Commun. 270 92
[43] Sabir B, Murtaza G, Mahmood Q, Ahmad R and Bhamu K 2017 Curr. Appl. Phys. 17 1539
[44] Majid F, Nasir M T, Algrafy E, Sajjad M, Noor N, Mahmood A and Ramay S M 2020 J. Mater. Res. Techn. 9 6135
[45] Noor N A, Mahmood Q, Hassan M, Laref A, Rashid M 2018 J. Mol. Graph. Modell. 84 152
[46] Yasukawa M, Ueda K, Fujitsu S and Hosono H 2017 Ceram. Int. 43 9653
[47] Angsten T, Martin L W and Asta M 2018 Chem. Mater. 30 587
[48] Saal J E, Kirklin S, Aykol M, Meredig B and Wolverton C 2013 JOM 65 1501
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[3] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=\,Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[4] Detailed structural, mechanical, and electronic study of five structures for CaF 2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[5] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[6] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[7] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[8] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[9] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[10] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[11] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[12] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[13] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[14] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[15] Computational screening of doping schemes forLiTi2(PO4)3 as cathode coating materials
Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2020, 29(3): 038202.
No Suggested Reading articles found!