Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087101    DOI: 10.1088/1674-1056/ab9739
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)

Yong Li(李勇)1, Peng Xu(徐鹏)2, Xiaoming Zhang(张小明)3, Guodong Liu(刘国栋)3, Enke Liu(刘恩克)4,5, Lingwei Li(李领伟)1,2
1 Institute of Advanced Magnetic Materials, School of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China;
2 Key Laboratory of Electromagnetic Processing of Materials(Ministry of Education), Northeastern University, Shenyang 110819, China;
3 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China;
4 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM (TM=Fe, Ni, Cu) were investigated by the first-principles calculations based on density-functional theory. The results indicate that all three alloys are stabilized in the ferromagnetic L21-type structure. The total magnetic moments mainly come from Mn and Fe atoms for Cd2MnFe, whereas, only from Mn atoms for Cd2MnNi and Cd2MnCu. The magnetic moment at equilibrium lattice constant of Cd2MnFe (6.36 μB) is obviously larger than that of Cd2MnNi (3.95 μB) and Cd2MnCu (3.82 μB). The large negative energy differences (ΔE) between martensite and austenite in Cd2MnFe and Cd2MnNi under tetragonal distortion and different uniform strains indicate the possible occurrence of ferromagnetic martensitic transformation (FMMT). The minimum total energies in martensitic phase are located with the c/a ratios of 1.41 and 1.33 for Cd2MnFe and Cd2MnNi, respectively. The total moments in martensitic state still maintain large values compared with those in cubic state. The study is useful to find the new all-d-metal Heusler alloys with FMMT.
Keywords:  all-d-metal Heusler-like alloys      electronic structures      magnetic properties      martensitic transformation     
Received:  28 February 2020      Published:  05 August 2020
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  31.15.A- (Ab initio calculations)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  75.20.En (Metals and alloys)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ19E010006), the National Natural Science Foundation of China (Grant Nos. 51671048 and 91963123), the Ten Thousand Talents Plan of Zhejiang Province, China (Grant No. 2018R52003), and the Fundamental Research Funds for the Provincial University of Zhejiang Province, China (Grant No. GK199900X022).
Corresponding Authors:  Lingwei Li     E-mail:  lingwei@hdu.edu.cn

Cite this article: 

Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟) Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu) 2020 Chin. Phys. B 29 087101

[1] Webster P J, Ziebeck K R A, Town S L and Peak M S 1984 Philos. Mag. B 49 295
[2] Wang W H, Wu G H, Chen J L, Gao S X, Zhan W S, Wen G H and Zhang X X 2001 Appl. Phys. Lett. 79 1148
[3] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T and Ishida K 2006 Nature 439 957
[4] Ullakko K, Huang J K, Kokorin V V and O'Handley R C 1997 Scr. Mater. 36 1133
[5] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
[6] Hu F, Shen B, Sun J and Wu G 2001 Phys. Rev. B 64 132412
[7] Mañosa L, González-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S and Acet M 2010 Nat. Mater. 9 478
[8] Nayak A K, Nicklas M, Chadov S, Khuntia P, Shekhar C, Kalache A, Baenitz M, Skourski Y, Guduru V K, Puri A, Zeitler U, Coey J M and Felser C 2015 Nat. Mater. 14 679
[9] Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B and Zhang X X 2006 Appl. Phys. Lett. 89 162503
[10] Singh S, Rawat R, Muthu S E, D'Souza S W, Suard E, Senyshyn A, Banik S, Rajput P, Bhardwaj S, Awasthi A M, Ranjan R, Arumugam S, Schlagel D L, Lograsso T A, Chakrabarti A and Barman S R 2012 Phys. Rev. Lett. 109 246601
[11] Cong D, Xiong W, Planes A, Ren Y, Mañosa L, Cao P, Nie Z, Sun X, Yang Z, Hong X and Wang Y 2019 Phys. Rev. Lett. 122 255703
[12] Wu M, Han Y, Bouhemadou A, Cheng Z, Khenata R, Kuang M, Wang X, Yang T, Yuan H and Wang X 2019 IUCrJ 6 218
[13] Zhao W Q, Dai X F, Zhang X M, Mo Z J, Wang X T, Chen G F, Cheng Z X and Liu G D 2019 IUCrJ 6 552
[14] Zhang Y J, Liu Z H, Wu Z G and Ma X Q 2019 IUCrJ 6 610
[15] Liu Z H, Tang Z J, Tan J G, Zhang Y J, Wu Z G, Wang X T, Liu G D and Ma X Q 2018 IUCrJ 5 794
[16] Li Y, Dai X, Liu G, Wei Z, Liu E, Han X, Du Z, Xi X, Wang W and Wu G 2018 Chin. Phys. B 27 026101
[17] Wang D, Wang C, Yu T and Liu W 2020 Chin. Phys. B 29 043103
[18] He C, Tang Y, Li X, He Y, Lu C and Guo Z 2019 Chin. Phys. B 28 117501
[19] Hao J, Hu F, Yu Z, Shen F, Zhou H, Gao Y, Qiao K, Li J, Zhang C, Liang W, Wang J, He J, Sun J and Shen B 2020 Chin. Phys. B 29 047504
[20] Wei Z Y, Liu E K, Chen J H, Li Y, Liu G D, Luo H Z, Xi X K, Zhang H G, Wang W H and Wu G H 2015 Appl. Phys. Lett. 107 022406
[21] Wei Z Y, Liu E K, Li Y, Han X L, Du Z W, Luo H Z, Liu G D, Xi X K, Zhang H W, Wang W H and Wu G H 2016 Appl. Phys. Lett. 109 071904
[22] Wei Z Y, Sun W, Shen Q, Shen Y, Zhang Y F, Liu E K and Liu J 2019 Appl. Phys. Lett. 114 101903
[23] Aznar A, Grácia-Condal A, Planes A, Lloveras P, Barrio M, Tamarit J L, Xiong W, Cong D, Popescu C and Mañosa L 2019 Phys. Rev. Mater. 3 044406
[24] Yu K, Liu K, Ma S, Han X, Zhang Z, Song Y, Zhang Y, Chen C, Luo X and Zhong Z 2019 J. Magn. Magn. Mater. 484 31
[25] Liu K, Ma S, Ma C, Han X, Yu K, Yang S, Zhang Z, Song Y, Luo X, Chen C, Rehman S U and Zhong Z 2019 J. Alloys Compd. 790 78
[26] Liu K, Han X, Yu K, Ma C, Zhang Z, Song Y, Ma S, Zeng H, Chen C, Luo X, Rehman S U and Zhong Z 2019 Intermetallics 110 106472
[27] Wang X, Cheng Z, Liu G, Dai X, Khenata R, Wang L and Bouhemadou A 2017 IUCrJ 4 758
[28] Duan J, Wang Y, Zhang A, Liu S and Dar S A 2019 Solid State Commun. 290 12
[29] Han Y, Wu M, Feng Y, Cheng Z, Lin T, Yang T, Khenata R and Wang X 2019 IUCrJ 6 465
[30] Ni Z, Ma Y, Liu X, Luo H, Liu H and Meng F 2018 J. Magn. Magn. Mater. 451 721
[31] Li L W 2016 Chin. Phys. B 25 037502
[32] Zhang Y K 2019 J. Alloys Compd. 787 1173
[33] Li L and Yan M 2020 J. Alloys Compd. 823 153810
[34] Han Y, Bouhemadou A, Khenata R, Cheng Z, Yang T and Wang X 2019 J. Magn. Magn. Mater. 471 49
[35] Yang T, You J, Hao L, Khenata R, Wang Z and Wang X 2020 J. Magn. Magn. Mater. 498 166188
[36] Vanderbilt D 1990 Phys. Rev. B 41 7892
[37] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.:Condenes. Matter 14 2717
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Graf T, Casper F, Winterlik J, Balke B, Fecher G H and Felser C 2009 Z. Anorg. Allg. Chem. 635 976
[40] Skaftouros S, Özdoǧan K, Şaşı oǧlu E and Galanakis I 2013 Phys. Rev. B 87 024420
[41] Tan J G, Liu Z H, Zhang Y J, Li G T, Zhang H G, Liu G D and Ma X Q 2019 Results Phys. 12 1182
[42] Zeng Q, Shen J, Zhang H, Chen J, Ding B, Xi X, Liu E, Wang W and Wu G 2019 J. Phys.:Condens. Matter 31 425401
[43] Chen J, Liu E, Qi X, Luo H, Wang W, Zhang H, Wang S, Cai J and Wu G 2014 Comp. Mater. Sci. 89 130
[44] Faleev S V, Ferrante Y, Jeong J, Samant M G, Jones B and Parkin S S P 2017 Phys. Rev. Appl. 7 034022
[45] Entel P, Siewert M, Gruner M E, Chakrabarti A, Barman S R, Sokolovskiy V V and Buchelnikov V D 2013 J. Alloys Compd. 577 S107
[46] Han Y, Wu M, Kuang M, Yang T, Chen X and Wang X 2018 Results Phys. 11 1134
[1] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[2] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[3] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[4] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[5] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[6] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[7] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(10): 107504.
[8] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[9] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[10] Off-axis electron holography of manganite-based heterojunctions: Interface potential and charge distribution
Zhi-Bin Ling(令志斌), Gui-Ju Liu(刘桂菊), Cheng-Peng Yang(杨成鹏), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜). Chin. Phys. B, 2019, 28(4): 046101.
[11] Enhanced structural and magnetic properties of microwave sintered Li-Ni-Co ferrites prepared by sol-gel method
Nandeibam Nilima, M Maisnam, Sumitra Phanjoubam. Chin. Phys. B, 2019, 28(2): 026101.
[12] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[13] Electronic properties of size-dependent MoTe2/WTe2 heterostructure
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起). Chin. Phys. B, 2019, 28(10): 107101.
[14] Interface properties and electronic structures of aromatic molecules with anhydride and thio-functional groups on Ag (111) and Au (111) substrates
Wei-Qi Yu(余维琪), Hong-Jun Xiao(肖红君), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 103101.
[15] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
No Suggested Reading articles found!