Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 073401    DOI: 10.1088/1674-1056/ab90f5

Surface for methane combustion: O(3P)+CH4→OH+CH3

Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师)
School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  Kinetic investigations including quasi-classical trajectory and canonical unified statistical theory method calculations are carried out on a potential energy surface for the hydrogen-abstraction reaction from methane by atom O(3P). The surface is constructed using a modified Shepard interpolation method. The ab initio calculations are performed at the CCSD(T) level. Taking account of the contribution of inner core electrons to electronic correlation interaction in ab initio electronic structure calculations, modified optimized aug-cc-pCVQZ basis sets are applied to the all-electrons calculations. On this potential energy surface, the triplet oxygen atom attacks methane in a near-collinear H-CH3 direction to form a saddle point with barrier height of 13.55 kcal/mol, which plays a key role in the kinetics of the title reaction. For the temperature range of 298-2500 K, our calculated thermal rate constants for the O(3P)+CH4→ OH+CH3 reaction show good agreement with relevant experimental data. This work provides detailed mechanism of this gas-phase reaction and a theoretical guidance for methane combustion.
Keywords:  methane combustion      potential energy surface      transition state      kinetic      ab initio electronic structure calculation  
Received:  29 February 2020      Revised:  28 April 2020      Published:  05 July 2020
PACS:  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  31.15.xv (Molecular dynamics and other numerical methods)  
  34.50.Lf (Chemical reactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51574016) and completed while the author was in residence at UNSW, Australia supported by the International Cooperation Training Program for Innovative Talents of USTB.
Corresponding Authors:  Ya Peng, Zhong-An Jiang     E-mail:;

Cite this article: 

Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师) Surface for methane combustion: O(3P)+CH4→OH+CH3 2020 Chin. Phys. B 29 073401

[1] Zhang J H and Liu K P 2011 Chem. Asian J. 6 3132
[2] Jing F Q, Cao J W, Liu X J, Hu Y F, Ma H T and Bian W S 2016 Chin. J. Chem. Phys. 29 430
[3] Fu B N, Shan X, Zhang D H and Clary D C 2017 Chem. Soc. Rev. 46 7625
[4] Peng Y, Jiang Z A and Chen J S 2017 J. Phys. Chem. A 121 2209
[5] Peng Y, Jiang Z A and Chen J S 2018 Chin. Phys. B 27 023401
[6] Jiang Z A, Peng Y, Chen J S, Lan G and Lin H Y 2018 Chin. Phys. B 27 063401
[7] Ault B S 2019 J. Mol. Struct. 1176 47
[8] Guan Y F and Yarkony D R 2020 J. Phys. Chem. Lett. 11 1848
[9] Liu R, Song H W and Yang M H 2019 Chinese J Chem. Phys. 32 46
[10] Troya D 2019 J. Phys. Chem. A 123 6911
[11] Walch S P and Dunning Jr T H 1980 J. Chem. Phys. 72 3221
[12] Baulch D L, Cobos C, Cox R A et al. 1992 J. Phys. Chem. Ref. Data 21 411
[13] Suzuki T and Hirota E 1993 J. Chem. Phys. 98 2387
[14] Wang M L, Li Y M and Zhang J Z 2001 J. Phys. Chem. A 105 2530
[15] Ausfelder F, Kelso H and McKendrick K G 2002 Phys. Chem. Chem. Phys 4 473
[16] Troya D, Schatz G C, Garton D J, Brunsvold A L and Minton T K 2004 J. Chem. Phys. 120 731
[17] Troya D and Garcia-Molina E 2005 J. Phys. Chem. A 109 3015
[18] Zhang J M, Lahankar S A, Garton D J, Minton T K, Zhang W Q and Yang X M 2011 J. Phys. Chem. A 115 10894
[19] Baulch D L, Bowman C T, Cobos C J et al. 2005 J. Phys. Chem. Ref. Data 34 757
[20] González C, McDouall J J W and Schlegel H B 1990 J. Phys. Chem. 94 7467
[21] González M, Hernando J, Millán J and Sayós R 1999 J. Chem. Phys. 110 7326
[22] Roberto-Neto O, Machado F B C and Truhlar D G 1999 J. Chem. Phys. 111 10046
[23] Shao K J, Fu B N and Zhang D H 2015 Chin. J. Chem. Phys. 28 403
[24] Corchado J C, Espinosa-Garcia J, Roberto-Neto O, Chuang Y Y and Truhlar D G 1998 J. Phys. Chem. A 102 4899
[25] Czakó G and Bowman J M 2012 Proc. Natl. Acad. Sci. USA 109 7997
[26] Li Y L, Suleimanov Y V, Green W H and Guo H 2014 J. Phys. Chem. A 118 1989
[27] Cederbaum L S, Domcke W and Köppel H 1978 Chem. Phys. 33 319
[28] Domcke W, Mishra S and Poluyanov L V 2006 Chem. Phys. 322 405
[29] Opalka D, Segado M, Poluyanov L V and Domcke W 2010 Phys. Rev. A 81 042501
[30] Czakó G 2014 J. Chem. Phys. 140 231102
[31] Zhao H L, Wang W J and Zhao Y 2016 J. Phys. Chem. A 120 7589
[32] Bowman J M, Czakó G and Fu B N 2011 Phys. Chem. Chem. Phys. 13 8094
[33] González-Lavado E, Corchado J C and Espinosa-Garcia J 2014 J. Chem. Phys. 140 064310
[34] Joseph T, Steckler R and Truhlar D G 1987 J. Chem. Phys. 87 7036
[35] Jordan M J T and Gilbert R G 1995 J. Chem. Phys. 102 5669
[36] Espinosa-Garcia J and Garcia-Bernaldez J C 2000 Phys. Chem. Chem. Phys. 2 2345
[37] Espinosa-Garcia J 2014 J. Phys. Chem. A 118 3572
[38] González-Lavado E, Rangel C and Espinosa-Garcia J 2014 Phys. Chem. Chem. Phys. 16 8428
[39] Monge-Palacios M, González-Lavado E and Espinosa-Garcia J 2014 J. Chem. Phys. 141 094307
[40] Jasper A W, Sivaramakrishnan R and Klippenstein S J 2019 J. Chem. Phys. 150 114112
[41] Suleimanov Y V, Aoiz F J and Guo H 2016 J. Phys. Chem. A 120 8488
[42] Thompson K C, Jordan M J T and Collins M A 1998 J. Chem. Phys. 108 8302
[43] Morris M and Jordan M J T 2014 J. Chem. Phys. 140 204107
[44] Cao J W, Zhang Z J, Zhang C F, Liu K, Wang M H and Bian W S 2009 Proc. Natl. Acad. Sci. USA 106 13180
[45] Zhang W Q, Zhou Y, Wu G R et al. 2010 Proc. Natl. Acad. Sci. USA 107 12782
[46] Zhou Y, Fu B N, Wang C R, Collins M A and Zhang D H 2011 J. Chem. Phys. 134 064323
[47] Cao J W, Zhang Z J, Zhang C F, Bian W S and Guo Y 2011 J. Chem. Phys. 134 024315
[48] Frankcombe T J and Collins M A 2011 Phys. Chem. Chem. Phys. 13 8379
[49] Frisch M J, Trucks G W, Schlegel H B et al. 2010 Gaussian 09, Wallingford CT
[50] Zheng J J, Zhao Y and Truhlar D G 2009 J. Chem. Theory Comput. 5 808
[51] Gomez-Carrasco S, Roncero O, Gonzalez-Sanchez L, Hernandez M L, Alvarino J M, Paniagua M and Aguado A 2005 J. Chem. Phys. 123 114310
[52] Raghavachari K, Trucks G W, Pople J A and Head-Gordon M 1989 Chem. Phys. Lett. 157 479
[53] Bettens R P A and Collins M A 1999 J. Chem. Phys. 111 816
[54] Collins M A 2002 Theor. Chem. Acc. 108 313
[55] Jordan M, Thompson K, Bettens R et al. GROW, version 2.2, a collection of scripts and programs that allow the user to construct molecular potential energy surfaces for either unimolecular/bimolecular reactions or bound-state systems
[56] Cao J W, Li F Y, Xia W S and Bian W S 2019 Chinese J. Chem. Phys. 32 157
[57] Wang F Y and Liu K P 2010 Chem. Sci. 1 126
[58] Zheng J, Zhang S, Lynch B J et al. POLYRATE, version 2015, a computer program for the calculation of chemical reaction rates for polyatomics, see
[59] González-Lavado E, Corchado J C, Suleimanov Y V, Green W H and Espinosa-Garcia J 2014 J. Phys. Chem. A 118 3243
[60] Cohen N 1986 Int. J. Chem. Kinet. 18 59
[61] Gordon M S and Truhlar D G 1986 J. Am. Chem. Soc. 108 5412
[1] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[2] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[3] Inverse Ising techniques to infer underlying mechanisms from data
Hong-Li Zeng(曾红丽), Erik Aurell. Chin. Phys. B, 2020, 29(8): 080201.
[4] Direct Coulomb explosion of N2O2+ induced by monochromatic extreme ultraviolet photons at 38.5 eV
Min Zhang(张敏), B Najjari, Bang Hai(海帮), Dong-Mei Zhao(赵冬梅), Jian-Ting Lei(雷建廷), Da-Pu Dong(董达谱), Shao-Feng Zhang(张少锋), Xin-Wen Ma(马新文). Chin. Phys. B, 2020, 29(6): 063302.
[5] Compact NbN resonators with high kinetic inductance
Xing-Yu Wei(魏兴雨), Jia-Zheng Pan(潘佳政), Ya-Peng Lu(卢亚鹏), Jun-Liang Jiang(江俊良), Zi-Shuo Li(李子硕), Sheng Lu(卢盛), Xue-Cou Tu(涂学凑), Qing-Yuan Zhao(赵清源), Xiao-Qing Jia(贾小氢), Lin Kang(康琳), Jian Chen(陈健), Chun-Hai Cao(曹春海), Hua-Bing Wang(王华兵), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2020, 29(12): 128401.
[6] The theory of helix-based RNA folding kinetics and its application
Sha Gong(龚沙), Taigang Liu(刘太刚), Yanli Wang(王晏莉), and Wenbing Zhang(张文炳)†. Chin. Phys. B, 2020, 29(10): 108703.
[7] Theoretical estimation of sonochemical yield in bubble cluster in acoustic field
Zhuang-Zhi Shen(沈壮志). Chin. Phys. B, 2020, 29(1): 014304.
[8] Theoretical study of overstretching DNA-RNA hybrid duplex
Dong-Ni Yang(杨东尼), Zhen-Sheng Zhong(钟振声), Wen-Zhao Liu(刘文钊), Thitima Rujiralai, Jie Ma(马杰). Chin. Phys. B, 2019, 28(6): 068701.
[9] Study of glass transition kinetics of As2S3 and As2Se3 by ultrafast differential scanning calorimetry
Fan Zhang(张凡), Yimin Chen(陈益敏), Rongping Wang(王荣平), Xiang Shen(沈祥), Junqiang Wang(王军强), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2019, 28(4): 047802.
[10] Collision of cold CaF molecules: Towards evaporative cooling
Yuefeng Gu(顾跃凤), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(3): 033401.
[11] The CALYPSO methodology for structure prediction
Qunchao Tong(童群超), Jian Lv(吕健), Pengyue Gao(高朋越), Yanchao Wang(王彦超). Chin. Phys. B, 2019, 28(10): 106105.
[12] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[13] Overrun phenomenon and neutron yield in Coulomb explosion of deuterated alkane clusters driven by intense laser field
Hong-Yu Li(李洪玉), Mei-Dong Huang(黄美东), Ming Kang(康明), De-Jun Li(李德军). Chin. Phys. B, 2018, 27(6): 063602.
[14] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[15] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
No Suggested Reading articles found!