Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 060303    DOI: 10.1088/1674-1056/ab8379
GENERAL Prev   Next  

Approximate solution to the time-dependent Kratzer plus screened Coulomb potential in the Feinberg-Horodecki equation

Mahmoud Farout1, Ramazan Sever2, Sameer M. Ikhdair1,3
1 Department of Physics, An-Najah National University, Nablus, Palestine;
2 Department of Physics, Middle East Technical University, Ankara 06531, Turkey;
3 Department of Electrical Engineering, Near East University, Nicosia, Northern Cyprus, Mersin 10, Turkey
Abstract  We obtain the quantized momentum eigenvalues Pn together with space-like coherent eigenstates for the space-like counterpart of the Schrödinger equation, the Feinberg-Horodecki equation, with a combined Kratzer potential plus screened coulomb potential which is constructed by temporal counterpart of the spatial form of these potentials. The present work is illustrated with two special cases of the general form: the time-dependent modified Kratzer potential and the time-dependent screened Coulomb potential.
Keywords:  quantized momentum states      Feinberg-Horodecki equation      the time-dependent screened Coulomb potential      and time-dependent modified Kratzer potential  
Received:  25 February 2020      Revised:  19 March 2020      Published:  05 June 2020
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Pm (Relativistic wave equations)  
Corresponding Authors:  Mahmoud Farout     E-mail:  m.qaroot@najah.edu

Cite this article: 

Mahmoud Farout, Ramazan Sever, Sameer M. Ikhdair Approximate solution to the time-dependent Kratzer plus screened Coulomb potential in the Feinberg-Horodecki equation 2020 Chin. Phys. B 29 060303

[1] Park T J 2002 Bull. Korean Chem. Soc. 23 1733
[2] Vorobeichik I, Lefebvre R and Moiseyev N 1998 Europhys. Lett. 41 111
[3] Shen J Q 2003 arXiv:0310179[quant-ph]
[4] Feng M 2001 Phys. Rev. A 64 034101
[5] Horodecki R 1988 Il Nuovo Cimento B 102 27
[6] Feinberg G 1967 Phys. Rev. 159 1089
[7] Molski M 2006 Eur. Phys. J. D. 40 411
[8] Molski M 2010 Biosystems 100 47
[9] Witten E 1981 Nuc. Phys. B 188 513
[10] Molski M 1988 Phys. J. B: At. Mol. Opt. Phys. 21 3449
[11] Recami E and Mignani R 1974 Riv. Nuovo Cim. 4 209
[12] Recami E 1986 Riv. Nuovo Cim. 9 1
[13] Molski M 1999 Europhys. Lett. 48 115
[14] Hamzavi M, Ikhdair S M and Amirfakhrian M 2013 Theor. App. Phys. J. 7 40
[15] Eshghi M, Sever R and Ikhdair S M 2016 Eur. Phys. J. Plus 131 223
[16] Berkdemir C, Berkdemir A and Han J 2006 Chem. Phys. Lett. 417 326
[17] Sadeghi J 2007 Acta Phys. Polon. 112 23
[18] Sever R and Tezcan C 2008 Int. J. Mod. Phys. E 17 1327
[19] Kandirmaz N 2018 Math. Phys. J. 59 063510
[20] Cheng Y F and Dai T Q 2007 Phys. Scr. 75 274
[21] Hassanabadi H, Rahimov H and Zarrinkamar S 2011 Adv. High Energy Phys. 2011 458087
[22] Yan-Fu C and Tong-Qing D 2007 Commun. Theor. Phys. 48 431
[23] Ghodgaonkar A and Ramani K 1981 J. Chem. Soc. Faraday Trans. 77 209
[24] Khordad R 2013 Indian J. Phys. 87 623
[25] Babaei-Brojeny A A and Mokari M 2011 Phys. Scr. 84 045003
[26] Edet C, Okorie U, Ngiangia A and Ikot A 2019 Indian J. Phys. 94 425
[27] Okorie U, Edet C, Ikot A, Rampho G and Sever R 2020 Indian J. Phys. 94 (in press)
[28] Jia C S, Wang C W, Zhang L H, Peng X L, Tang H M and Zeng R 2018 Chem. Eng. Sci. 183 26
[29] Peng X L, Jiang R, Jia C S, Zhang L H and Zhao Y L 2018 Chem. Eng. Sci. 190 122
[30] Jia C S, Zeng R, Peng X L, Zhang L H and Zhao Y L 2018 Chem. Eng. Sci. 190 1
[31] Jia C S, Zhang L H, Peng X L, Luo J X, Zhao Y L, Liu J Y, Guo J J and Tang L D 2019 Chem. Eng. Sci. 202 70
[32] Jia C S, Wang C W, Zhang L H, Peng X L, Zeng R and You X T 2017 Chem. Phys. Lett. 676 150
[33] Jia C S, Wang C W, Zhang L H, Peng X L, Tang H M, Liu J Y, Xiong Y and Zeng R 2018 Chem. Phys. Lett. 692 57
[34] Jiang R, Jia C S, Wang Y Q, Peng X L and Zhang L H 2019 Chem. Phys. Lett. 715 186
[35] Chen X Y, Li J and Jia C S 2019 ACS Omega 4 16121
[36] Wang J, Jia C S, Li C J, Peng X L, Zhang L H and Liu J Y 2019 ACS Omega 4 19193
[37] Jia C S, Wang Y T, Wei L S, Wang C W, Peng X L and Zhang L H 2019 ACS Omega 4 20000
[38] Nikiforov A F and Uvarov V B 1988 Doklady Akademii Nauk SSSR 191 47 (in Russian)
[39] Kratzer A 1920 Z. Phys. A 3 289 (in Deutsch)
[40] Molski M 2007 arXiv:0706.3851 [quant-ph]
[41] Ikot A N, Okorie U, Th A, Onate C A, Edet C O, Akpan I O and Amadi P O 2020 Eclética Química J. 45 65
[1] Chaotic dynamics of complex trajectory and its quantum signature
Wen-Lei Zhao(赵文垒), Pengkai Gong(巩膨恺), Jiaozi Wang(王骄子), and Qian Wang(王骞). Chin. Phys. B, 2020, 29(12): 120302.
[2] Chaotic state as an output of vacuum state evolving in diffusion channel and generation of displaced chaotic state for quantum controlling
Feng Chen(陈锋), Wei Xiong(熊伟), Bao-Long Fang(方保龙) , and Hong-Yi Fan(范洪义). Chin. Phys. B, 2020, 29(12): 124202.
[3] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁), Xiangguo Meng(孟祥国), and Xiaoyan Zhang(张晓燕). Chin. Phys. B, 2020, 29(12): 124213.
[4] Effects of postselected von Neumann measurement on the properties of single-mode radiation fields
Yusuf Turek(玉素甫·吐拉克). Chin. Phys. B, 2020, 29(9): 090302.
[5] Ordered product expansions of operators (AB)±m with arbitrary positive integer
Shi-Min Xu(徐世民), Yu-Shan Li(李玉山), Xing-Lei Xu(徐兴磊), Lei Wang(王磊), Ji-Suo Wang(王继锁). Chin. Phys. B, 2020, 29(10): 100301.
[6] Damping of displaced chaotic light field in amplitude dissipation channel
Ke Zhang(张科), Lan-Lan Li(李兰兰), Hong-Yi Fan(范洪义). Chin. Phys. B, 2020, 29(10): 100302.
[7] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[8] Quantum legitimacy of reversible gate and a new design of multiplier based on R gate
Tingyu Ge(葛庭宇), Tinggui Zhang(张廷桂), Xiaofen Huang(黄晓芬). Chin. Phys. B, 2020, 29(5): 050305.
[9] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[10] Recast combination functions of coordinate and momentum operators into their ordered product forms
Lei Wang(王磊), Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁). Chin. Phys. B, 2020, 29(5): 050303.
[11] Experimental demonstration of tight duality relation inthree-path interferometer
Zhi-Jin Ke(柯芝锦), Yu Meng(孟雨), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(5): 050307.
[12] Topology and ferroelectricity in group-V monolayers
Mutee Ur Rehman, Chenqiang Hua(华陈强), Yunhao Lu(陆赟豪). Chin. Phys. B, 2020, 29(5): 057304.
[13] Optical complex integration-transform for deriving complex fractional squeezing operator
Ke Zhang(张科), Cheng-Yu Fan(范承玉), Hong-Yi Fan(范洪义). Chin. Phys. B, 2020, 29(3): 030306.
[14] Applicability of coupling strength estimation for linear chains of restricted access
He Feng(冯赫), Tian-Min Yan(阎天民), Yuhai Jiang(江玉海). Chin. Phys. B, 2020, 29(3): 030305.
[15] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
No Suggested Reading articles found!