Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 050301    DOI: 10.1088/1674-1056/ab7da6
GENERAL Prev   Next  

Generation of tripartite Einstein-Podolsky-Rosen steering by cascaded nonlinear process

Yu Liu(刘瑜)1, Su-Ling Liang(梁素玲)1, Guang-Ri Jin(金光日)1, You-Bin Yu(俞友宾)1, Jian-Yu Lan(蓝建宇)2, Xiao-Bin He(何小斌)2, Kang-Xian Guo(郭康贤)3
1 Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2 Shanghai Institute of Space Power Sources, Shanghai Academy of Spaceflight Technology, Shanghai 200245, China;
3 School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006, China
Abstract  A scheme is proposed to generate genuine tripartite Einstein-Podolsky-Rosen (EPR) steering in cascaded nonlinear process of the fourth-harmonic generation. The second-harmonic is generated by the first double-frequency process in an optical superlattice. Then, the fourth-harmonic is produced by the second cascaded double-frequency process through quasi-phase-matching technique in the same optical superlattice. The genuine tripartite EPR steering among the pump, the second-harmonic, and the fourth-harmonic beams can be obtained by this cascaded nonlinear process according to a criterion for genuine multipartite quantum steering. The quantum steering properties are discussed by adjusting the parameters related to the cascaded nonlinear system. The present research provides a reference scheme and data for obtaining good multipartite EPR steering in experiment and can advance the applications of quantum steering in the quantum information processing.
Keywords:  quantum steering      harmonic generation      quasi-phase-matching      optical superlattice  
Received:  28 January 2020      Revised:  21 February 2020      Published:  05 May 2020
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975184, 91636108, and 61775043), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY18A040007), the Science Foundation of Zhejiang Sci-Tech University (Grant Nos. 19062151-Y and 18062145-Y), and the Open Foundation of the Key Laboratory of Optical Field Manipulation of Zhejiang Province, China (Grant No. ZJOFM-2019-002).
Corresponding Authors:  You-Bin Yu, Xiao-Bin He     E-mail:  ybyu@163.com;33349445@qq.com

Cite this article: 

Yu Liu(刘瑜), Su-Ling Liang(梁素玲), Guang-Ri Jin(金光日), You-Bin Yu(俞友宾), Jian-Yu Lan(蓝建宇), Xiao-Bin He(何小斌), Kang-Xian Guo(郭康贤) Generation of tripartite Einstein-Podolsky-Rosen steering by cascaded nonlinear process 2020 Chin. Phys. B 29 050301

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Schrödinger E 1936 Math. Proc. Cambridge Philos. Soc. 32 446
[3] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555
[4] H Z Li, R S Han, Y Q Zhang and L Chen 2018 Chin. Phys. B 27 120304
[5] Y H Liu, L Wu, Z H Yan, X J Jia and K C Peng 2019 Acta Phys. Sin. 68 034202 (in Chinese)
[6] Y Y Ma, J X Feng, Z J Wan, Y H Gao and K S Zhang 2017 Acta Phys. Sin. 66 244205 (in Chinese)
[7] Zhao C Y and Zhang C M 2018 Chin. Phys. B 27 084204
[8] Yu Y B, Wang H J, Feng J X 2011 Chin. Phys. Lett. 28 090304
[9] Bell J S 2012 Phys. Rev. X 2 031003
[10] Liao C G, Chen Z H, Luo C L 2010 Acta Phys. Sin. 59 8526 (in Chinese)
[11] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[12] Jones S J, Wiseman H M and Doherty A C 2007 Phys. Rev. A 76 052116
[13] Bennet A J, Evans D A, Saunders D J, Branciard C, Cavalcanti E G, Wiseman H M and Pryde G J 2012 Phys. Rev. X 2 031003
[14] Cavalcanti E G, Jones S J, Wiseman H M and Reid M D 2009 Phys. Rev. A 80 032112
[15] Reid M D 1989 Phys. Rev. A 40 913
[16] Evans D A, Cavalcanti E G and Wiseman H M 2013 Phys. Rev. A 88 022106
[17] Evans D A and Wiseman H M 2014 Phys. Rev. A 90 012114
[18] Skrzypczyk P and Cavalcanti D 2015 Phys. Rev. A 92 022354
[19] Zhen Y Z, Zheng Y L, Cao W F, Li L, Chen Z B, Liu N L and Chen K 2016 Phys. Rev. A 93 012108
[20] Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663
[21] Smith D H, Gillett G, de Almeida M P, et al. 2012 Nat. Commun. 3 625
[22] Wittmann B, Ramelow S, Steinlechner F, et al. 2012 New J. Phys. 14 053030
[23] Saunders D J, Jones S J, Wiseman H M and Pryde G J 2010 Nat. Phys. 6 845
[24] He Q Y and Reid M D 2013 Phys. Rev. Lett. 111 250403
[25] Armstrong S, Wang M, Teh R Y, et al. 2015 Nat. Phys. 11 167
[26] Bowles J, Vétesi T, Quintino M T and Brunner N 2014 Phys. Rev. Lett. 112 200402
[27] Quintino M T, Vértesi T, Cavalcanti D, et al. 2015 Phys. Rev. A 92 032107
[28] Händchen V, Eberle T, Steinlechner S, et al. 2012 Nat. Photon. 6 596
[29] Wollmann S, Walk N, Bennet A J, Wiseman H M and Pryde G J 2016 Phys. Rev. Lett. 116 160403
[30] Olsen M K 2017 Phys. Rev. Lett. 119 160501
[31] Olsen M K 2017 Phys. Rev. A 96 063839
[32] Olsen M K 2018 Phys. Rev. A 97 033820
[33] Qin Z Z, Deng X W, Tian C X, et al. 2017 Phys. Rev. A 95 052114
[34] Zhong W X, Cheng G L and Hu X M 2017 Opt. Express 25 11584
[35] Wang L, Lv S C and Jing J T 2017 Opt. Express 25 17457
[36] Liu Y, Cai Y, Xiang Y, Li F, Zhang Y P and He Q Y 2019 Opt. Express 27 33070
[37] Li J and Zhu S Y 2017 Phys. Rev. A 96 062115
[38] Liu Y, Liang S L, Jin G R and Yu Y B 2020 Opt. Express 28 2722
[39] He Q Y, Rosales-Zrate, Adesso L G and Reid M D 2015 Phys. Rev. Lett. 115 180502
[40] Xiang Y, Kogias I, Adesso G and He Q Y 2017 Phys. Rev. A 95 010101
[41] Chiu C Y, et al. 2016 njp Quantum Inf. 2 16020
[42] Walk N, Hosseini S, Geng J, et al. 2016 Optica 3 634
[43] Yu Y B and Wang H J 2011 J. Opt. Soc. Am. B 28 1899
[44] Yu Y B, Wang H J, Zhao J W, Ji F M and Wang Y J 2016 Laser Phys. Lett. 13 085203
[45] Gardiner C W 1991 Quantum Noise (New York: Springer) p. 203
[46] Zhu S N, Zhu Y Y and Ming N B 1997 Science 278 843
[47] Ferraro A, Paris M G A, Bondani M, Allevi A, Puddu E and Andreoni A 2004 J. Opt. Soc. Am. B 21 1241
[48] Yu Y B, Wang H J, Xiao M and Zhu S N 2011 Opt. Express 19 13949
[49] Collett M J and Gardiner C W 1984 Phys. Rev. A 30 1386
[50] Saunders D J, Jones S J, Wiseman H M and Pryde G J 2010 Nat. Phys. 6 845
[51] Li C B, Jiang Z H, Zhang Y Q, Zhang Z Y, Wen F, Chen X X, Zhang Y P and Xiao M 2017 Phys. Rev. Appl. 7 014023
[52] Zhang D, Li C B, Zhang Z Y, Zhang Y Q, Zhang Y P and Xiao M 2017 Phys. Rev. A 96 043847
[53] Zhu S N, Zhu Y Y, Qin Y Q, Wang H F, Ge C Z and Ming N B 1997 Phys. Rev. Lett. 78 2752
[54] Qin Y Q, et al. 1998 Appl. Phys. Lett. 84 6911
[1] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[2] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[3] Multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields
Peng-Cheng Li(李鹏程), Shih-I Chu. Chin. Phys. B, 2020, 29(8): 083202.
[4] Role of potential on high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser fields
Xu-Xu Shen(申许许), Jun Wang(王俊), Fu-Ming Guo(郭福明), Ji-Gen Chen(陈基根), Yun-Jun Yang(杨玉军). Chin. Phys. B, 2020, 29(8): 083201.
[5] Semi-integer harmonic generation from an argon atom by bichromatic counter-rotating circularly polarized laser field
Tong Qi(齐桐), Xiao-Xin Huo(霍晓鑫), Jun Zhang(张军), Xue-Shen Liu(刘学深). Chin. Phys. B, 2020, 29(5): 053201.
[6] Controlling paths of high-order harmonic generation by orthogonal two-color fields
Ze-Hui Ma(马泽慧), Cai-Ping Zhang(张彩萍), Jun-Lin Ma(马俊琳), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2020, 29(4): 043201.
[7] Phase jump in resonance harmonic emission driven by strong laser fields
Yuan-Yuan Zhao(赵媛媛), Di Zhao(赵迪), Chen-Wei Jiang(蒋臣威), Ai-Ping Fang(方爱平), Shao-Yan Gao(高韶燕), Fu-Li Li(李福利). Chin. Phys. B, 2020, 29(2): 023201.
[8] Numerical simulations of strong-field processes in momentum space
Yan Xu(徐彦), Xue-Bin Bian(卞学滨). Chin. Phys. B, 2020, 29(2): 023202.
[9] Enhancement effect of cumulative second-harmonic generation by closed propagation feature of circumferential guided waves
Guang-Jian Gao(高广健), Ming-Xi Deng(邓明晰), Ning Hu(胡宁), Yan-Xun Xiang(项延训). Chin. Phys. B, 2020, 29(2): 024301.
[10] Role of quantum paths in generation of attosecond pulses
M R Sami and A Shahbaz†. Chin. Phys. B, 2020, 29(10): 104207.
[11] An improved method for the investigation of high-order harmonic generation from graphene
Zhong Guan(管仲), Lu Liu(刘璐), Guo-Li Wang(王国利)†, Song-Feng Zhao(赵松峰), Zhi-Hong Jiao(焦志宏), and Xiao-Xin Zhou(周效信)‡. Chin. Phys. B, 2020, 29(10): 104206.
[12] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[13] Quantum interference of a time-dependent wave packet of atom irradiated by an ultra-short laser pulse
Wen-Min Yan(闫文敏), Ji-Gen Chen(陈基根), Jun Wang(王俊), Fu-Ming Guo(郭福明), Yu-Jun Yang(杨玉军). Chin. Phys. B, 2020, 29(1): 013202.
[14] Bohmian trajectory perspective on strong field atomic processes
Xuan-Yang Lai(赖炫扬), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2020, 29(1): 013205.
[15] Resolving multi-orbital effects on high harmonic generation from aligned N2 molecules in linearly and elliptically polarized intense laser fields
Hong-Jing Liang(梁红静), Xin Fan(范鑫), Shuang Feng(冯爽), Li-Yu Shan(单立宇), Qing-Hua Gao(高庆华), Bo Yan(闫博), Ri Ma(马日), Hai-Feng Xu(徐海峰), Da-Jun Ding(丁大军). Chin. Phys. B, 2019, 28(9): 094211.
No Suggested Reading articles found!