Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057501    DOI: 10.1088/1674-1056/ab7b57
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing

Ze-Teng Shu(舒泽腾)1,2, Bo Zheng(郑波)2, Guang-Fei Ding(丁广飞)2, Shi-Cong Liao(廖是聪)2, Jing-Hui Di(邸敬慧)2, Shuai Guo(郭帅)2, Ren-Jie Chen(陈仁杰)2, A-Ru Yan(闫阿儒)2, Lei Shi(石磊)1
1 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China;
2 Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  The Nd-Fe-B magnets are pre-sintered and then processed with hot-pressing, and the resulting magnets are called the hot-pressed pretreated (HPP) magnets. The coercivity of the HPP magnets increases as the annealed temperature increases. When the annealing temperature is 900℃, the coercivity of the magnet is only 17.6 kOe (1 Oe=79.5775 A·m-1), but when the annealing temperature rises up to 1060℃, the coercivity of the magnet reaches 23.53 kOe, which is remarkably increased by 33.7%. The microstructure analysis indicates that the grain surface of the HPP magnet becomes smoother as the annealed temperature increases. The microstructure factor α is changed according to the intrinsic coercivity model formula. The α of the magnet at 900℃ is only 0.578, but it is 0.825 at 1060℃. Microstructural optimization is due mainly to the increase of coercivity of the HPP magnet.
Keywords:  hot-pressed      coercivity      microstructure      anisotropy field  
Received:  09 January 2020      Revised:  26 January 2020      Published:  05 May 2020
PACS:  75.60.Nt (Magnetic annealing and temperature-hysteresis effects)  
  75.50.Ww (Permanent magnets)  
  75.50.Vv (High coercivity materials)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the Major Project of “Science and Technology Innovation 2025” in Ningbo City, China (Grant Nos. 2018B10086 and 2018B10017).
Corresponding Authors:  Bo Zheng, Shuai Guo     E-mail:  zhengbo@nimte.ac.cn;gshuai@nimte.ac.cn

Cite this article: 

Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊) Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing 2020 Chin. Phys. B 29 057501

[1] Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[2] Liu W Q, Chang C, Yue M, Yang J S, Zhang D T, Liu Y Q, Zhang J X, Yi X F and Chen J W 2013 J. Magn. 18 400
[3] Hirota K, Nakamura H, Minowa T and Honshima M 2006 IEEE Trans. Magn. 42 2909
[4] Cao X J, Chen L, Guo S, Fan F C, Chen R J and Yan A 2017 Scr. Mater. 131 24 (in Chinese)
[5] Komuro M, Satsu Y and Suzuki H 2010 IEEE Trans. Magn. 46 3831
[6] Liu X B and Altounian Z 2012 J. Appl. Phys. 111 07A701
[7] Tang M, Bao X, Lu K, Sun L, Li J and Gao X 2016 Scr. Mater. 117 60
[8] Kong J Y, Kim T H, Lee S R, Kim H J, Lee M W and Jang T S 2015 Met. Mater. Int. 21 600
[9] Sepehri-Amin H, Ohkubo T and Hono K 2010 J. Appl. Phys. 107 09A745
[10] Liu W Q, Sun H, Yi X F, Liu X C, Zhang D T, Yue M S and Zhang J X 2010 J. Alloys Compd. 501 67
[11] Bae K H, Kim T H, Lee S R, Namkung S and Jang T S 2012 J. Appl. Phys. 112 093912
[12] Song J, Guo S, Ding G F, Chen K, Chen R J, Lee D and Yan A 2019 J. Magn. Magn. Mater. 469 613
[13] Zhang T B, Zhou X Q, Yu D D, Fu Y Q, Li G J, Cui W B and Wang Q 2017 Appl. Phys. A-Mater. 123 111
[14] Bae K H, Kim T H, Lee S R, NamKung S and Jang T S 2013 IEEE Trans. Magn. 49 3251
[15] Ding G F, Guo S, Chen L, Di J H, Chen K, Chen R J, Lee D and Yan A 2018 J. Alloys Compd. 735 1176
[16] Ju J Y, T X, Chen R J, Wang J Z, Yin W Z, Li D and Yan A 2015 Chin. Phys. B 24 017504
[17] Wang Z X, Ju J Y, Wang J Z, Yin W Z, Chen R J, Li M, Jin C X, Xu Tang, Don Lee and Aru Yan 2016 Sci. Rep. 6 38335
[18] Kronmüller H 1987 Phys. Stat. Sol. (b) 144 385
[19] Givord D, Lu Q, Rossignol M F, Tenaud P and Viadieu T 1990 J. Magn. Magn. Mater. 83 183
[20] Zhou Q, Li W, Hong Y, Zhao L Z, Zhong X C, Yu H G, Huang L L and Liu Z W 2018 J. Rare Earth 36 379
[21] Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M and Yamauchi H 1986 J. Appl. Phys. 59 873
[1] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
[2] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[3] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[4] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[5] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[6] Multi-scale elastoplastic mechanical model and microstructure damage analysis of solid expandable tubular
Hui-Juan Guo(郭慧娟), Ying-Hua Liu(刘应华), Yi-Nao Su(苏义脑), Quan-Li Zhang(张全立), and Guo-Dong Zhan(詹国栋)†. Chin. Phys. B, 2020, 29(10): 104602.
[7] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
[8] Influences of grain size and microstructure on optical properties of microcrystalline diamond films
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(1): 018103.
[9] Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys
Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇). Chin. Phys. B, 2019, 28(8): 087502.
[10] Regulating element distribution to improve magnetic properties of sintered Nd-Fe-B/Tb-Fe-B composite magnets
Zhu-Bai Li(李柱柏), Jing-Yan Zuo(左敬燕), Dong-Shan Wang(王东山), Fei Liu(刘飞), Xue-Feng Zhang(张雪峰). Chin. Phys. B, 2019, 28(7): 077503.
[11] Coercivity mechanisms in nanostructured permanent magnets
G P Zhao(赵国平), L Zhao(赵莉), L C Shen(沈来川), J Zou(邹静), L Qiu(邱雷). Chin. Phys. B, 2019, 28(7): 077505.
[12] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[13] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[14] Effect of microstructure on 3He migration in TiT1.9 films
Haifeng Wang(王海峰), Shuming Peng(彭述明), Wei Ding(丁伟), Huahai Shen(申华海), Weidu Wang(王维笃), Xiaosong Zhou(周晓松), Xinggui Long(龙兴贵). Chin. Phys. B, 2018, 27(9): 096103.
[15] Microparticle collection for water purification based on laser-induced convection
Zhi-Hai Liu(刘志海), Jiao-Jie Lei(雷皎洁), Yu Zhang(张羽), Ya-Xun Zhang(张亚勋), Xing-Hua Yang(杨兴华), Jian-Zhong Zhang(张建中), Yun Yang(杨军), Li-Bo Yuan(苑立波). Chin. Phys. B, 2018, 27(5): 054209.
No Suggested Reading articles found!