Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 046201    DOI: 10.1088/1674-1056/ab7188
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation

Minrong An(安敏荣)1, Mengjia Su(宿梦嘉)2, Qiong Deng(邓琼)2, Haiyang Song(宋海洋)1, Chen Wang(王晨)1, Yu Shang(尚玉)1
College of Materials Science and Engineering, Xi'an Shiyou University, Xi'an, China, Fundamental Science on Aircraft Structural Mechanics and Strength Laboratory, Northwestern Polytechnical University, Xi'an, China
Abstract  Using molecular dynamics simulations, the plastic deformation behavior of nanocrytalline Ti has been investigated under tension and compression normal to the {0001}, {1010}, and {1210} planes. The results indicate that the plastic deformation strongly depends on crystal orientation and loading directions. Under tension normal to basal plane, the deformation mechanism is mainly the grain reorientation and the subsequent deformation twinning. Under compression, the transformation of hexagonal-close packed (HCP)-Ti to face-centered cubic (FCC)-Ti dominates the deformation. When loading is normal to the prismatic planes (both {1010} and {1210}), the deformation mechanism is primarily the phase transformation among HCP, body-centered cubic (BCC), and FCC structures, regardless of loading mode. The orientation relations (OR) of {0001}HCP||{111}FCC and <1210>HCP||<110>FCC, and {1010}HCP||{110}FCC and <0001>HCP||<010>FCC between the HCP and FCC phases have been observed in the present work. For the transformation of HCP→BCC→HCP, the OR is {0001}α1||{110}β||{1010}α2 (HCP phase before the critical strain is defined as α1-Ti, BCC phase is defined as β-Ti, and the HCP phase after the critical strain is defined as α2-Ti). Energy evolution during the various loading processes further shows the plastic anisotropy of nanocrystalline Ti is determined by the stacking order of the atoms. The results in the present work will promote the in-depth study of the plastic deformation mechanism of HCP materials.
Keywords:  molecular dynamics simulation      nanocrystalline Ti      anisotropic plasticity      deformation mechanism  
Received:  11 December 2019      Revised:  22 January 2020      Published:  05 April 2020
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  61.46.-w (Structure of nanoscale materials)  
  64.70.Nd (Structural transitions in nanoscale materials)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11572259), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2019JQ-827, 2018JM1013, and 2018JQ5108), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 19JK0672).
Corresponding Authors:  Qiong Deng, Haiyang Song     E-mail:  dengqiong24@nwpu.edu.cn;gsfshy@sohu.com

Cite this article: 

Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉) Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation 2020 Chin. Phys. B 29 046201

[1] Leyens C and Peters M 2003 Titanium and Titanium Alloys: Fundamentals and Applications (Darmstadt: Wiley-VCH) pp. 25-35
[2] Zhang Y F, Xue S, Li Q, Li J, Ding J, Niu T J, Su R, Wang H and Zhang X 2019 Acta Mater. 175 466
[3] Elias C N, Lima J H C, Valiev R, et al. 2008 Jom 60 46
[4] Das J, Kim K B, Baier F, Löser W and Eckert J 2005 Appl. Phys. Lett. 87 161907
[5] Peters M, Kumpfert J, Ward C H and Leyens C 2003 Adv. Eng. Mater. 5 419
[6] Banerjee D and Williams J C 2013 Acta Mater. 61 844
[7] Xiao L 2005 Mater. Sci. Eng. A 394 168
[8] Wang Q, Yin Y, Sun Q, Xiao L and Sun J 2014 J. Mater. Res. 29 569
[9] Liu B Y, Wang J, Li B, Lu L, Zhang X Y, Shan Z W, Li J, Jia C, Sun J and Ma E 2014 Nat. Commun. 5 3297
[10] Liu B Y, Wan L, Wang J, Ma E and Shan Z W 2015 Scr. Mater. 100 86
[11] Wang J, Liu L, Tomé C N, Mao S X and Gong S K 2013 Mater. Res. Lett. 1 81
[12] Tu J and Zhang S 2016 Mater. 96 143
[13] Ni C, Ding H and Jin X 2016 Comput. Mater. Sci. 111 163
[14] Chen P, Wang F and Li B 2019 Comput. Mater. Sci. 164 186
[15] Ren J, Sun Q, Xiao L, Ding X and Sun J 2014 Comput. Mater. Sci. 92 8
[16] An M, Deng Q, Li Y, Song H, Su M and Cai J 2017 Mater. 127 204
[17] Yu Q, Sun J, Morris J W Jr and Minor A M 2013 Scr. Mater. 69 57
[18] Ren J, Sun Q, Xiao L, Ding X and Sun J 2014 Mater. Sci. Eng. A 615 22
[19] Yu Q, Li S, Minor A M, Sun J and Ma E 2012 Appl. Phys. Lett. 100 063109
[20] Chen P, Wang F and Li B 2019 Acta Mater. 171 65
[21] Yang J X, Zhao H L, Gong H R, Song M and Ren Q Q 2018 Sci. Rep. 8 1992
[22] Zhao H, Hu X, Song M and Ni S 2017 Scr. Mater. 132 63
[23] An M, Song H and Su J 2012 Chin. Phys. B 21 106202
[24] Shahzad A, He M, Ghani S, Kashif M, Munir T and Yang F 2019 Chin. Phys. B 28 055201
[25] Li Y, Cai J, Mo D and Wang Y 2018 Chin. Phys. B 27 086401
[26] Liu Q, Guo Q N, Qian X F, Wang H N, Guo R L, Xiao Z J and Pei H J 2019 Acta Phys. Sin. 68 133101 (in Chinese)
[27] Li Y and Peng P 2019 Acta Phys. Sin. 68 076401 (in Chinese)
[28] Li R, Liu T, Chen X, Chen S C, Fu Y H and Liu L 2018 Acta Phys. Sin. 67 190202 (in Chinese)
[29] Lee B J 2007 Calphad 31 95
[30] Lee B J and Baskes M 2000 Phys. Rev. B 62 8564
[31] Wang X H, Shen W H, Huang X F, Zang J L and Zhao Y P 2017 Sci. China-Phys. Mech. Astron. 60 064612
[32] Wadley H N G, Zhou X, Johnson R A and Mechanisms M 2001 Progr. Mater. Sci. 46 329
[33] Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford-Long A K, Smith G D W, Clifton P H, Martens R L and Kelly T F 2001 Acta Mater. 49 4005
[34] Wan L, Yu X X, Zhou X and Thompson G 2016 J. Appl. Phys. 119 245302
[35] Su M J, Deng Q, An M R, Liu L T and Ma C B 2019 Comput. Mater. Sci. 158 149
[36] Rao S I, Akdim B, Antillon E, Woodward C, Parthasarathy T A and Senkov O N 2019 Acta Mater. 168 222
[37] Faken D and Jónsson H 1994 Comput. Mater. Sci. 2 279
[38] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
[39] Li D, Wang F C, Yang Z Y and Zhao Y P 2014 Sci. China-Phys. Mech. Astron. 57 2177
[40] Stukowski A, Bulatov V V and Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007
[41] Yu Q, Kacher J, Gammer C, Traylor R, Samanta A, Yang Z and Minor A M 2017 Scr. Mater. 140 9
[42] Hong D H, Lee T W, Lim S H, Kim W Y and Hwang S K 2013 Scr. Mater. 69 405
[43] Wu H C, Kumar A, Wang J, Bi X F, Tomé C N, Zhang Z and Mao S X 2016 Sci. Rep. 6 24370
[44] An M R, Deng Q, Su M J, Song H Y and Li Y L 2017 Mater. Sci. Eng. A 684 491
[1] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[2] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[3] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[4] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[5] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[6] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[7] Fractional variant of Stokes-Einstein relation in aqueous ionic solutions under external static electric fields
Gan Ren(任淦), Shikai Tian(田时开). Chin. Phys. B, 2020, 29(3): 036101.
[8] Plastic deformation mechanism transition of Ti/Ni nanolaminate with pre-existing crack: Molecular dynamics study
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼)†, Min-Rong An(安敏荣), and Lan-Ting Liu(刘兰亭). Chin. Phys. B, 2020, 29(11): 116201.
[9] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[10] Find slow dynamic modes via analyzing molecular dynamics simulation trajectories
Chuanbiao Zhang(张传彪) and Xin Zhou(周昕)†. Chin. Phys. B, 2020, 29(10): 108706.
[11] Density functional calculations of efficient H2 separation from impurity gases (H2, N2, H2O, CO, Cl2, and CH4) via bilayer g-C3N4 membrane
Yuan Guo(郭源), Chunmei Tang(唐春梅), Xinbo Wang(王鑫波), Cheng Wang(王成), Ling Fu(付玲). Chin. Phys. B, 2019, 28(4): 048102.
[12] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[13] Approximate expression of Young's equation and molecular dynamics simulation for its applicability
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Wei-Wei Liu(刘伟伟), Ru-Zeng Zhu(朱如曾), Qian Ping(钱萍). Chin. Phys. B, 2019, 28(1): 016801.
[14] Potentials of classical force fields for interactions between Na+ and carbon nanotubes
De-Yuan Li(李德远), Guo-Sheng Shi(石国升), Feng Hong(洪峰), Hai-Ping Fang(方海平). Chin. Phys. B, 2018, 27(9): 098801.
[15] Molecular dynamics simulations on the dynamics of two-dimensional rounded squares
Zhang-lin Hou(侯章林), Ying Ju(句颖), Yi-wu Zong(宗奕吾), Fang-fu Ye(叶方富), Kun Zhao(赵坤). Chin. Phys. B, 2018, 27(8): 088203.
No Suggested Reading articles found!