Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 038202    DOI: 10.1088/1674-1056/ab7186
Special Issue: SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale
Prev   Next  

Computational screening of doping schemes for LiTi2(PO4)3 as cathode coating materials

Yu-Qi Wang(王宇琦)1,2, Xiao-Rui Sun(孙晓瑞)1,2, Rui-Juan Xiao(肖睿娟)1,2, Li-Quan Chen(陈立泉)1,2
1 Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  In all-solid-state lithium batteries, the impedance at the cathode/electrolyte interface shows close relationship with the cycle performance. Cathode coatings are helpful to reduce the impedance and increase the stability at the interface effectively. LiTi2(PO4)3 (LTP), a fast ion conductor with high ionic conductivity approaching 10-3 S·cm-1, is adopted as the coating materials in this study. The crystal and electronic structures, as well as the Li+ ion migration properties are evaluated for LTP and its doped derivatives based on density functional theory (DFT) and bond valence (BV) method. Substituting part of Ti sites with element Mn, Fe, or Mg in LTP can improve the electronic conductivity of LTP while does not decrease its high ionic conductivity. In this way, the coating materials with both high ionic conductivities and electronic conductivities can be prepared for all-solid-state lithium batteries to improve the ion and electron transport properties at the interface.
Keywords:  lithium battery materials      high-throughput calculations      density functional theory      virtual screening  
Received:  29 November 2019      Revised:  15 January 2020      Published:  05 March 2020
PACS:  82.47.Aa (Lithium-ion batteries) (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51772321), and the National Key R&D Program of China (Grant No. 2017YFB0701602), and the Youth Innovation Promotion Association, China (Grant No. 2016005). The Shanghai Supercomputer Center provided the computing resources.
Corresponding Authors:  Rui-Juan Xiao     E-mail:

Cite this article: 

Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉) Computational screening of doping schemes for LiTi2(PO4)3 as cathode coating materials 2020 Chin. Phys. B 29 038202

[1] Etacheri V, Marom R, Elazari R, Salitra G and Aurbach D 2011 Energy & Environ. Sci. 4 3243
[2] Poizot P and Dolhem F 2011 Energy & Environ. Sci. 4 2003
[3] Jacobson M Z and Delucchi M A 2011 Ene. Policy 39 1154
[4] Mizushima K, Jones P C, Wiseman P J and Goodenough J B 1980 Mater. Res. Bull. 15 783
[5] Li H, Wang Z, Chen L and Huang X 2009 Adv. Mater. 21 4593
[6] Yao X Y, Liu D, Wang C S, Long P, Peng G, Hu Y S, Hu Y S, Li H, Chen L Q and Xu X X 2016 Nano Lett. 16 7148
[7] Xiao Y, Miara L J, Wang Y and Ceder G 2019 Joule 3 1
[8] Wang Q Y, Wang S, Zhang J N, Zheng J Y, Yu X Q and Li H 2017 Energy Storage Science and Technology 6 1008
[9] He Y, Yu X Q, Wang Y H, Li H and Huang X J 2011 Adv. Mater. 23 4938
[10] Aatiq A, Ménétrier M, Croguennec L, Suardc E and Delmas C 2002 J. Mater. Chem. 12 2971
[11] Lu X, Wang S H, Xiao R J, Shi S Q, Li H and Chen L Q 2017 Nano Energy 41 626
[12] Takada K, Tansho M, Yanase I, Inada T and Kajiyama A 2001 Solid State Ionics 139 241
[13] Chen Z, Qin Y, Amine K and Sun Y K 2010 J. Mater. Chem. 20 7606
[14] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864
[15] Adams S and Rao R P 2011 Phys. Status Solidi A 208 1746
[16] Xiao R J, Li H and Chen L Q 2015 Sci. Rep. 5 14227
[17] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[18] Blochl P E 1994 Phys. Rev. B 50 17953
[19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[3] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[4] Detailed structural, mechanical, and electronic study of five structures for CaF 2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[5] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[6] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[7] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[8] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[9] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[10] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[11] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[12] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[13] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[14] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[15] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
No Suggested Reading articles found!